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Abstract

Evaluating the quality of explainability methods is challenging due to the lack of1

ground truth explanations, and often rely on hand-crafted heuristics. We curate2

the Ground Truth eXplanation dataset (GTX) to evaluate the alignment of feature3

attributions with human annotations. These annotations are carefully selected to be4

directly causal to the ground truth label, which provides an unambiguous goal for5

human-aligned explainable models. GTX is a diverse benchmark spanning multiple6

real-world and high dimensional data types (time-series, image, and text). In these7

settings, the actual explanatory features constitute only a small fraction of the entire8

feature space. Our analysis finds that common explanation methods overlook the9

ground truth explanatory features with a worryingly high false negative rate. Our10

dataset provides a quantitative goal for the future development of feature attribution11

algorithms: re-aligning explainable models with human explanations. GTX datasets12

and data loaders publicly available at https://github.com/xjiae/HDDDS.13

1 Introduction14

The size of modern deep networks can easily exceed millions of parameters and hidden units, making15

it challenging for humans to understand [1]. However, decision makers need to comprehend the16

model’s reasoning and determine if and when they should rely on these predictions. In higher stakes17

settings, there are severe repercussions for naively deploying models without fully understanding its18

reasoning and limitations, such as in diagnosis systems in medicine [2] or legal briefs in judiciaries19

[3]. To provide some degree of accountability, many post-hoc techniques [4, 5, 6] have been proposed20

to explain the reasoning behind individual predictions of machine learning models.21

One popular class of explanation techniques is feature attributions [7, 8, 9], where given an input, the22

objective is to assign a score for each feature as it relates to the model’s prediction. Intuitively, the23

score of a feature is intended to measure the “importance” of said feature towards the model prediction,24

where larger scores indicate the feature was highly important for making the prediction. Feature25

attributions have applications in classic machine learning settings such as vision [10, 11], language [12,26

13], and reinforcement learning [14, 15], as well as more recent use-cases in industry [16] and27

law [17].28

However, feature attributions rarely come with formal guarantees of behavior [18]. While various29

metrics have been proposed to evaluate feature attributions, each metric only provides a plausible,30

partial view into the underlying model’s behavior that need not be accurate. For instance, some31

metrics progressively remove features with the highest attribution scores and assessing the resulting32

change [19, 20]. Many of these metrics arose out of necessity because ground-truth explanations for33
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comparison were unclear or simply not available. As a result, ensuring that feature attributions are of34

high quality remains a significant challenge despite their widespread usage.35

Hence, our work puts forth a measurable and human-aligned target for feature attributions. In order36

for models to effectively assist humans, it is essential for their decision-making to be aligned with37

human judgment [21]. Specifically, a feature attribution for an explainable model should identify38

the ground truth causal features in the data. 1 Therefore, we seek to quantify to what degree are39

models and their feature attributions aligned with human judgment. If explainable models exhibit a40

high degree of alignment with humans, then their explanations are more usable as a proxy for human41

experts. For example, a doctor could use such a human-aligned attribution to explain a medical42

diagnoses in lieu of asking a specialist, freeing up the specialist to pursue more challenging tasks.43

However, evaluating feature attributions with human judgment is challenging due to the absence of a44

ground truth explanation [22]. Several benchmarks for evaluating feature attribution methods, such45

as Captum [23] and OpenXAI [24], have been established using synthetic datasets where the ground46

truth can be carefully controlled and specified. However, there remains a need to complement these47

benchmarks with high-dimensional, and real-world datasets that offer a diverse and rich perspective48

for evaluating of feature attribution algorithms in natural settings. To this end, we have curated a set49

of real-world datasets that possess ground truth human annotations in domains such as industrial50

controls [25, 26, 27], artifact evaluation [28], and machine comprehension [29].51

Our benchmark, called the Ground Truth eXplanation dataset (GTX), is specifically designed to52

comprehensively evaluate the human-alignment of feature attribution methods in challenging, real-53

world settings. Our contribution can be summarized as follows:54

• We meticulously clean and process the human annotations to create the Ground Truth55

Explanation (GTX) dataset. The resulting benchmark spans three prominent data domains:56

time-series, image, and text, as depicted in Figure 1, but has a standardized and measurable57

human-alignment goal across all tasks.58

• We establish a baseline for the alignment of common feature attribution methods and models59

with the human annotations using our GTX benchmark.60

• In our analysis, we show that existing feature attribution algorithms have a high false negative61

rate and tend to overlook the true explanatory features. This misalignment highlights the62

need for future research to achieve more usable explanations.63

The remainder of this paper is organized as follows: Section 2 provides a review of existing feature64

attribution methods and explores relevant XAI benchmarks and datasets. In Section 3, we introduce65

our dataset, highlighting its unique attributes and characteristics. To showcase potential usage of66

feature attribution methods on our dataset, we present baseline experiments in Section 4. Subsequently,67

in Section 5, we discuss the limitations of our dataset and conclude with a summary of our findings.68

Figure 1: GTX overview. We consolidate raw data of time-series, image and text format. Then, we
process the annotation files to obtain the ground truth explanations in column, pixel and clause levels.

1We note that this criteria (explaining the prediction from patterns in the data) differs from explaining
predictions from patterns learned in the model. In the latter, the goal is different—these explanations aim to
uncover properties learned in the model which need not be aligned with the ground truth or be usable for humans.

2



2 Related Work69

2.1 XAI methods on Feature Attribution70

The existing literature encompasses various taxonomies of Explainable Artificial Intelligence (XAI)71

methods, each tailored to address specific problems and aspects. In this study, our primary emphasis is72

on the post-hoc method branch, with a specific focus on feature attribution [5, 7] or feature relevance73

explanation [6]. Feature attribution refers to the process of determining the importance or contribution74

of individual features within a dataset or input data to the predictions or output of a machine learning75

model [7, 8, 9, 10, 30, 31, 32]. Specifically, we reproduce the code of two standard explanation76

methods for evaluation: Vanilla Gradient [31] and Integrated Gradients [32].77

2.2 XAI Benchmarks and Datasets78

Many open-source library implement a handful of feature attribution algorithms, for example, Cap-79

tum [33] and SHAP bechmarks [34]. However, they do not perform ground-truth based evaluation.80

Several studies acknowledge the limitation of XAI due to the absence of ground-truth for evaluating81

explanations [20, 35, 36]. To address this issue, researchers have started introducing ground truth82

annotations to assess XAI methods. For instance, Amiri et al. [37] propose the use of canonical83

equations as representations of explanations for evaluating their accuracy. Furthermore, Arras et84

al. [38] introduce CLEVR-XA, a visual question answering dataset designed specifically for eval-85

uating neural network explanations in computer vision tasks. OpenXAI [24] offers a transparent86

evaluation of post hoc model explanations using tabular data and perform faithfulness evaluation with87

ground truth of the synthetic data. Different from previous works, we present five real-world datasets88

of different data types, i.e., time-series, image, and text, that can be used to perform evaluation based89

on human-annotated ground truth explanations.90

3 Ground Truth eXplanation Dataset91

In our GTX dataset we consolidate three common types of data in time-series, image, and text,92

for evaluating feature attribution methods. For time-series data the features correspond to periodic93

samples of a plant state; for image data the features correspond to pixels of the image; for text data94

the features correspond to tokens of the text. By analyzing the importance of these features, we can95

gain insights into the decision-making process of the model from the input level.96

3.1 Time-series97

The time-series component of GTX consists of three different datasets from various industrial control98

settings involving real-world or simulated plants. All three datasets were generated by sampling the99

plant at a fixed frequency, where for each datapoint the feature values denote either a sensor reading100

or a controller output.101

Hardware-In-the-Loop-based Augmented ICS Security Dataset (HAI) [25]: The HAI dataset102

was collected from a realistic industrial control system (ICS) testbed, augmented with a Hardware-103

In-the-Loop (HIL) simulator for 379.3 hours. The HIL simulator emulates two crucial components104

of the power generation domain: steam-turbine power generation and pumped-storage hydropower105

generation, with a total of m = 86 features.106

Secure Water Treatment Dataset (SWaT) [26]: The Secure Water Treatment testbed serves as a107

scaled-down replica of a real-world industrial water treatment plant. It operates at a reduced capacity,108

producing five gallons per minute of water for over 11 days. The treatment process involves the109

utilization of membrane-based ultrafiltration and reverse osmosis units for effective water filtration,110

comprising of m = 51 features in total.111
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Water Distribution Dataset (WADI) [27]: WADI is an extension of the SWaT testbed featuring112

additional components and functionalities such as chemical dosing systems, booster pumps and valves,113

as well as instrumentation and analyzers. It is collected over 16 days with m = 127 dimensions.114

At various time points a cyber attack (e.g. altering sensor readings) or a physical attack (e.g. altering115

water flow) is performed, which allows one to obtain a ground truth of whether a plant state is to be116

considered “normal” or “attacked”. The attacks target specific sets of equipment and have precise117

start and end times, allowing us to obtain accurate ground truth explanations for the features during118

the attacks. We manually process annotation files in both PDF and Excel formats, which contain the119

start and end times of each attack. These annotations are then aligned with the timestamps of the raw120

data records.121

Each dataset is a sequence of periodic samples (x1, y1), . . . , (xT , yT ) where at each time step122

t = 1, . . . , T the observations xt ∈ Rm denotes plant state while the label yt ∈ {0, 1} is an indicator123

of whether the plant was attacked (yt = 1) or if the behavior is normal (yt = 0). We use a binary124

mask at ∈ {0, 1}m as the ground truth explanation to denote which input feature is explanatory of125

an attack. If yt = 1, then (at)
i = 1 implies that feautre i is involved in attack at time t — which126

we know from the annotations supplied with the original datasets. If yt = 0, then we write at = 0,127

the zeros vector, to mean that no attack occurred. In summary, our dataset loader provides three key128

objects at each time step: the plant features xt, the attack indicator yt, and the explanation at.129

To facilitate the use of our dataset with machine learning models in PyTorch [39], we wrap the raw130

data using the torch.utils.data.Dataset class. Below is an example code snippet demonstrating131

its usage with the HAI dataset:132

133
bundle = get_data_bundle("hai", window_size=100 , train_batch_size=32)134

train_dataloader = bundle["train_dataloader"]135

x, y, a = next(iter(train_dataloader))136

# x.shape ==(32,100 ,86), y.shape ==(32 ,), a.shape ==(32,100 ,86)137138

3.2 Image139

MVTec-AD [28] is an industrial inspection dataset designed for benchmarking defects detection140

methods. It consists of a 15 categories with a total of more than 5000 high-resolution (3×1024×1024)141

images. Each category includes a set of defect-free training images and a test set containing images142

with different types of defects, as well as defect-free images. The dataset provides pixel-accurate143

ground truth annotations for the defect regions, which have been carefully annotated and reviewed by144

the authors to align with human interpretation of real-world defects.145

We allow the user to specify an input size d ≤ 1024 to down-sample an image to m = 3 × d × d146

features, i.e. 3 color channels with a side-length of d pixels. Each image is correspondingly labeled147

with whether it has a defect (y = 1) or not (y = 0). The ground truth explanation is a bitmask148

a ∈ {0, 1}d×d denoting which positions are defects; if (a)ij = 1, then this means that the pixel at149

position (i, j) is part of the defect. If y = 0, then a = 0, the zeros matrix, indicating no defects. The150

objects returned by the dataset are the down-sampled image x, the defect label y, and the ground151

truth explanation a.152

As there are 15 image categories in total, MVTec is in fact a collection of 15 different datasets. We153

implement the MVTec dataset with torch.utils.data.Dataset, and showcase its use below.154

155
bundle = get_data_bundle("mvtec", input_size=256 , train_batch_size=32)156

train_dataloader = bundle["train_dataloader"]157

x, y, a = next(iter(train_dataloader))158

# x.shape ==(32,3,256 ,256), y.shape ==(32 ,), a.shape ==(32,1,256 ,256)159160

Here hazelnut is one of 15 admissible classes among:161

bottle, cable, capsule, carpet, grid, hazelnut, leather, metal_nut,162

pill, screw, tile, toothbrush, transistor, wood, zipper163
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Here input_size is the dimension d to which we downsample, and the last flag of is_train=True164

selects only images that are non-defect; if is_train=False then the selection is mixed.165

3.3 Text166

SQuAD (Stanford Question Answering Dataset) [29] is a widely used reading comprehension167

dataset that includes 107,785 question-answer pairs based on 536 Wikipedia articles. The dataset168

was generated by crowdworkers who formulated questions and provided specific text segments or169

spans as answers. The answers have undergone rigorous crowdworkers selection, additional answer170

collection, and manual crosscheck processes, making them reliable ground truth explanations for the171

corresponding questions.172

The questions are concatenated with a context, such that model inputs have the form x = (xq, xc),173

where xq are the question tokens and xc are the context tokens. The output of a question-answering174

model is to identify a range of indices to highlight in the conjoined input x that constitutes as the175

answer. As such, the output of a model on SQuAD is not a binary value as in the time-series and176

image data, but instead a start-index and an end-index that denotes which tokens to highlight. For a177

particular x in the dataset, the ground truth then consists of a pairing a = (as, ae), where as, ae are178

integers that denote the highlight start and end indices, respectively, for x.179

We implemented the SQuAD dataset with torch.utils.data.Dataset as follows, where we180

demonstrate tokenization with the RoBERTa [40] base tokenizer to sequence lengths of 384.181

182
# Use the "roberta -base" tokenizer from Hugging Face183

bundle = get_data_bundle("squad", tokenizer_or_name="roberta -base",184

train_batch_size=32)185

train_dataloader = bundle["train_dataloader"]186

input_ids , attn_mask , token_type_ids , start_pos , end_pos = next(iter(187

train_dataloader))188

# input_ids.shape ==(32 ,384), the default token sequence length189190

Each item within a SQuAD dataset contains a number of information relevant for a language-model191

transformer, among them: item[0] corresponds to x, which we emphasize is the concatenation192

of the question tokens and the context tokens; item[3] and item[4] correspond to the start and193

end position indices, respectively. We use the defaults supplied with tensorflow_datasets and194

transformers to determine the train-test split.195

3.4 Dataset Statistics196

In Table 1, we provide a summary of key statistics pertaining to the datasets. This includes information197

on the feature dimensions, the number of positive instances representing attacks or defects, the number198

of negative instances, and the corresponding positive ratio. Notably, the class distribution exhibits an199

imbalance, signifying a discrepancy in the distribution between negative and positive instances. We200

use “positive” to denote data for which y = 1, and “negative” to denote data for which y = 0.201

However, it is important to note that the SQuAD dataset presents unique characteristics that distinguish202

it from the other datasets. The variable lengths of paragraphs contribute to the variability in feature203

dimensions. Additionally, the SQuAD dataset does not differentiate between positive and negative204

instances, making it unsuitable for inclusion in Table 1 for comparative purposes.205

Data Features Dimension Positive Count Negative Count Total Count Positive Ratio
HAI 86 12,030 1,353,572 1,365,602 0.88%
SWaT 51 54,621 892,098 946,719 5.77%
WADI 127 5,134 1,377,268 1,382,402 0.37%
MVTec 3d2 1256 4094 5350 23.48%

Table 1: Basic statistics of HAI, SWaT, WADI, and MVTec. When y = 1 we say that the datapoint is
positive; when y = 0 we say that it is negative.
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Furthermore, we present several key statistics of the human annotations within our dataset. Specifi-206

cally, we report the total number of human annotations conducted, the average number of explanatory207

features per input, and the ratio of explanatory features to the entire feature space. This ratio serves as208

a crucial metric for assessing the class imbalance between explanatory and non-explanatory features209

in the annotations. For the SQuAD dataset, we gather and estimate the summary statistics based on210

information provided in their papers [29, 41].211

The presence of class imbalance poses significant challenges for feature attribution methods, as they212

aim to accurately identify and attribute the importance of each feature in the prediction process.213

When the number of explanatory features is significantly lower than the number of non-explanatory214

features, it can lead to biased attributions and potentially misleading interpretations of the model’s215

behavior.216

Data Annotation Count Average Count Explanatory Ratio
HAI 1,034,580 1.00 1.17%
SWaT 2,785,671 1.07 2.10%
WADI 652,018 1.93 1.52%
MVTec 1,317,011,456 45950.49 4.38%
SQuAD 107,785 4.64 3.10%

Table 2: Feature statistics of HAI, SWaT, WADI, MVTec and SQuAD.

3.5 Task Definition217

We formulate the task as predicting which features of an input x ∈ X ,X ⊆ Rm related to the218

target y ∈ Y . Specifically, a feature attribution model A : X → [0, 1]m maps an input x to an219

m-dimensional vector â = Â(x) ∈ [0, 1]m, where each element is a score representing the degree220

that the corresponding feature is explanatory of y. For each input x and target y, our dataset has a221

m-bit vector that encodes the ground truth annotation function A : X → {0, 1}m. It maps each input222

x to the human annotation a = A(x) ∈ {0, 1}m. By comparing â and a, we can directly evaluate the223

performance of the feature attribution model.224

4 Experiments225

4.1 Predictive models226

In our experiments involving time-series data, we utilize the standard implementation of well-227

established logistic regression model (LR) [42] and Long Short-term Memory networks (LSTM).228

In our analysis of the MVTec dataset, we utilize Fastflow [43], a CNN that employs ResNet18 as229

its backbone for image feature extraction. The SQuAD dataset is processed using the widely-used230

RoBERTa model [40]. These models are chosen to facilitate the application of diverse feature231

attribution methods.232

4.2 Feature Attribution methods233

In our study, we employ several widely used feature attribution techniques. Specifically, we apply the234

vanilla gradient (GRAD) [31] and integrated gradient (INTG) [32] to evalute the feature attribution235

performance. The objective of this analysis is to assess the importance of individual features in the236

decision-making process of the machine learning models. To quantify the effectiveness of the feature237

attribution techniques in a binary manner, we establish a threshold on the feature attribution scores.238

This threshold is determined by maximizing the F1-score, a widely utilized metric that balances239

precision and recall.240

4.3 Training241

In our time-series data study, we employed two distinct training strategies. Firstly, we randomly242

divided 70% of the dataset as the training set and train the Logistic Regression (LR) model. Secondly,243
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we preserved the temporal order by training a three-layered Long Short-Term Memory (LSTM)244

model on the sliding window version of the dataset. The training ratio of 70% was maintained, and a245

window size of 100 with a stride of one was used. For the image data, the FastFlow model was trained246

on 70% of the MVTec dataset. We sampled both negative and positive instances for the time-series247

and image training sets. The text data was trained using the RoBERTa model on the default training248

set, which accounted for 82% of the SQuAD dataset.249

All models were trained for five epochs with a learning rate of 10−6. The model with the best250

validation accuracy was selected. All experiments are run with 4 Nvidia 2080Ti GPU, 80 vCPUs,251

a processor Intel(R) % Xeon(R) Gold 6148 @ 2.4 GHz and 768GiB of RAM. Further details on252

the model architecture can be found in the Appendix. It is important to note that hyperparameter253

tuning was not the main focus of our study, as our primary objective was to showcase the utility of254

our dataset.255

4.4 Metrics256

By employing thresholds that optimize the F1-score on feature attribution, we obtain binary pre-257

dictions for individual features. In this context, we consider a prediction of ‘1’ a positive out-258

come (explanatory), while ‘0’ denotes a negative outcome (not explanatory). Let a = A(x) =259

{ai | i = 1, . . . ,m} ∈ {0, 1}m represent the ground truth annotation for x ∈ Rm. Let260

â = Â(x) = {âi | i = 1, . . . ,m} ∈ {0, 1}m denote the prediction generated by the attribu-261

tion models and the threshold. We then concatenate all the features of all the inputs and compute262

several evaluation metrics, including False Positive Rate (FPR), False Negative Rate (FNR), Accuracy263

(ACC), and F1-score. The computation formulas for these metrics are presented below:264

FPR =
{âi = 1 | ai = 0}

{ai = 0}
, FNR =

{âi = 0 | ai = 1}
{ai = 1}

(1)
265

ACC =
{âi = 0 | ai = 0}+ {âi = 1 | ai = 1}

{ai = 0}+ {ai = 1}
(2)

266

F1-score =
2{âi = 1 | ai = 1}

2{âi = 1 | ai = 1}+ {âi = 1 | ai = 0}+ {âi = 0 | ai = 1}
. (3)

4.5 Results267

We randomly sampled 100 instances on individual datasets and conducted the experiments using 20268

random seeds. The obtained results were then analyzed by reporting the mean and standard error269

metric.270

Time-series The results obtained from our experiments on time-series data have revealed that271

GRAD and INTG miss-classify the explanatory feature as non-explanatory, which leads to a higher272

FNR (+42.23%) than FPR on average, as shown in Table 3, 4, 5. In addition, we observe that273

GRAD has a better performance in general, with higher accuracy (+17.71%) and F1-score (+11.10%)274

performance than that of the INTG. This presents a serious problem as it undermines the reliability

Models Attribution FPR FNR ACC F1-score

LR
GRAD 0.02 ± 0.02 0.89 ± 0.09 0.97 ± 0.02 0.98 ± 0.01
INTG 0.49 ± 0.03 0.99 ± 0.01 0.51 ± 0.03 0.67 ± 0.03

LSTM
GRAD 0.06 ± 0.10 0.87 ± 0.19 0.94 ± 0.10 0.96 ± 0.06
INTG 0.01 ± 0.00 0.89 ± 0.02 0.98 ± 0.00 0.99 ± 0.00

Table 3: Results for HAI dataset.
275

and effectiveness of the attribution methods in correctly identifying the features that contribute to276

the model’s decision-making process. Consequently, it highlights the need for further improvement277

and development of attribution algorithms to address this challenge and enhance their capability to278

accurately identify and attribute the explanatory features.279
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Models Attribution FPR FNR ACC F1-score

LR
GRAD 0.03 ± 0.00 0.50 ± 0.05 0.96 ± 0.00 0.97 ± 0.00
INTG 0.52 ± 0.03 0.90 ± 0.03 0.48 ± 0.03 0.64 ± 0.03

LSTM
GRAD 0.31 ± 0.36 0.66 ± 0.35 0.69 ± 0.36 0.73 ± 0.37
INTG 0.53 ± 0.01 0.66 ± 0.04 0.47 ± 0.01 0.63 ± 0.01

Table 4: Results for SWaT dataset.

Models Attribution FPR FNR ACC F1-score

LR
GRAD 0.58 ± 0.07 0.28 ± 0.07 0.42 ± 0.07 0.58 ± 0.07
INTG 0.50 ± 0.03 0.94 ± 0.03 0.49 ± 0.03 0.66 ± 0.03

LSTM
GRAD 0.31 ± 0.11 0.46 ± 0.14 0.69 ± 0.11 0.80 ± 0.09
INTG 0.33 ± 0.24 0.71 ± 0.20 0.67 ± 0.24 0.77 ± 0.16

Table 5: Results for WADI dataset.

Image For the image data, Table 11 demonstrates that a higher FNR (+69.97%) than FPR is also280

observed, suggesting that the attribution methods fail to capture all the explanatory pixels. Different281

from the time-series dataset, INTG has a better performance than GRAD method, with a higher282

accuracy (+3.29%) and F1-score (+2.15%).

Models Attribution FPR FNR ACC F1-score

FastFlow
GRAD 0.14 ± 0.11 0.79 ± 0.11 0.86 ± 0.10 0.91 ± 0.07
INTG 0.10 ± 0.05 0.85 ± 0.06 0.89 ± 0.05 0.93 ± 0.03

Table 6: Results for MVTec dataset.

283

Text The result of the SQuAD dataset can be found in Table 12. As with previous datasets, a284

notable observation is the presence of a high FNR compared with the image dataset. The same result285

for INTG and GRAD could be due to the similar gradient computations by the RoBERTa model.286

However, the results may vary depending on the predictive model architecture, and the complexity of287

the explanation task in practice.288

Overall, the GRAD method demonstrates a slightly better performance than INTG, exhibiting a higher289

accuracy (+9.97%) and F1-score (+6.23%) on average. In Figure 2, we present a comparative analysis290

of average FPRs and FNRs for different attribution methods and datasets. The figure highlights that291

SQuAD exhibits the highest FNR while WADI showcases the highest FPR on average.292

More figures and results on other attribution methods (e.g. SHAP [7] and LIME [8]) can be found293

in the Appendix. Our experiments are illustrative in nature, running with different machines or294

configurations may yield slightly different results. However, the overall trends and patterns observed295

in the data should remain similar and consistent.296

(a) The average False Negative Rate (FPR). (b) The average False Negative Rate (FNR)

Figure 2: Average error rates comparison for INTG and GRAD across all datasets.

8



Models Attribution FPR FNR ACC F1-score

RoBERTa
GRAD 0.00 ± 0.00 1.00 ± 0.00 0.87 ± 0.00 0.81 ± 0.00
INTG 0.00 ± 0.00 1.00 ± 0.00 0.87 ± 0.00 0.81 ± 0.00

Table 7: Results for SQuAD dataset.

5 Conclusion297

One limitation of our dataset is the absence of real-world graph data. However, we are actively298

searching and we will update our repository once we find suitable datasets. In summary, our GTX299

dataset includes time-series, image, and text data, along with detailed feature-wise ground truth300

explanations. We have established a baseline for aligning common feature attribution algorithms with301

human annotation of the actual explanatory features, which takes up a relatively small proportion302

in real-world datasets. Our experiments have revealed a significant challenge posed by a higher303

FNR than FPR in existing feature attribution methods, emphasizing the need for improvements to304

accurately identify the true explanatory features. With its comprehensive collection and diverse data305

types, our dataset is a valuable resource for the XAI community, facilitating quantitative evaluation306

and advancements in feature attribution algorithms.307
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A Appendix431

A.1 Model Architecture432

Three-layered LSTM model433

SimpleLSTM(434

(lstm1): LSTM(num_features, 128)435

(lstm2): LSTM(128, 128)436

(lstm3): LSTM(128, 128)437

(linear): Linear(128, 2))438

We used the FastFlow with ResNet18 backbone and RoBERTa-base model. For details of model439

configuration, please refer to their papers [43, 40].440

A.2 More Experiment Results441

In this section, we present additional experimental results for the LIME method [8] and the SHAP442

method [7] applied to all the datasets, utilizing their respective predictive models. It is worth noting443

that the issue persists in both methods, whereby the false negative rate (FNR) remains greater than444

the false positive rate (FPR).445

Models Attribution FPR FNR ACC F1-score

LSTM
LIME 0.19 ± 0.13 0.74 ± 0.13 0.81 ± 0.13 0.88 ± 0.09
SHAP 0.53 ± 0.04 0.48 ± 0.03 0.47 ± 0.04 0.64 ± 0.03

Table 8: Results on LIME and SHAP for HAI dataset.

Models Attribution FPR FNR ACC F1-score

LSTM
LIME 0.37 ± 0.20 0.63 ± 0.19 0.63 ± 0.20 0.75 ± 0.14
SHAP 0.53 ± 0.02 0.51 ± 0.02 0.47 ± 0.02 0.63 ± 0.02

Table 9: Results on LIME and SHAP for SWaT dataset.

Models Attribution FPR FNR ACC F1-score

LSTM
LIME 0.44 ± 0.15 0.55 ± 0.15 0.56 ± 0.15 0.70 ± 0.10
SHAP 0.18 ± 0.16 0.79 ± 0.15 0.82 ± 0.16 0.88 ± 0.11

Table 10: Results on LIME and SHAP for WADI dataset.

Models Attribution FPR FNR ACC F1-score

FastFlow
LIME 0.28 ± 0.25 0.57 ± 0.23 0.72 ± 0.25 0.80 ± 0.20
SHAP 0.18 ± 0.21 0.73 ± 0.18 0.82 ± 0.21 0.87 ± 0.18

Table 11: Results on LIME and SHAP for MVTec dataset.

12

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html


Models Attribution FPR FNR ACC F1-score

RoBERTa
LIME 0.01 ± 0.03 1.00 ± 0.02 0.99 ± 0.03 0.98 ± 0.01
SHAP 0.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00

Table 12: Results on LIME and SHAP for SQuAD dataset.

Users are free to apply our dataset to modern models such as the tabular version of Transformer,446

Vision Transformers, and GPT-2. Since we provide PyTorch compatibility, running these models is447

straightforward.448

A.3 URL to website449

URL: https://github.com/xjiae/HDDDS.450

A.4 Author statement451

We bear all responsibility in case of violation of rights, and confirm that we will use the MIT License.452

A.5 Dataset documentation, intended use and metadata453

We adopt the framework data cards, please find the requested information below. For better visual454

display, please visit this link: https://github.com/xjiae/HDDDS/blob/main/description.455

md.456

The Ground Truth eXplanation (GTX) dataset is a curated collection that addresses the challenge457

of evaluating the quality of explainability methods. Existing approaches often lack ground truth458

explanations and heavily rely on hand-crafted heuristics. In response, the GTX dataset has been459

created to assess the alignment of feature attributions with human annotations. It contains time-series460

data (HAI, SWaT, WADI) from the industrial control domain, image data (MVTec) from the defect461

inspection domain, and text data (SQuAD) from the machine comprehension domain.462

Dataset Link Dataset Link: HAI, SWaT, WADI, MVTec, SQuAD.463

Data Card Author(s)464

• Xiayan Ji, University of Pennsylvania: (Manager)465

• Anton Xue, University of Pennsylvania: (Manager)466

A.5.1 Authorship467

Dataset Owners468

Team(s) University of Pennsylvania469

Author(s)470

• Xiayan Ji, Ph.D. Student, University of Pennsylvania, 2023471

• Anton Xue, Ph.D. Student, University of Pennsylvania, 2023472

• Rajeev Alur, Professor, University of Pennsylvania, 2023473

• Oleg Sokolsky, Professor, University of Pennsylvania, 2023474

• Insup Lee, Professor, University of Pennsylvania, 2023475

• Eric Wong, Assistant Professor, University of Pennsylvania, 2023476
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Contact Detail(s)477

• Point of Contact: Xiayan Ji478

• Affiliation: University of Pennsylvania479

• Contact: xjiae@seas.upenn.edu480

A.5.2 Dataset Overview481

• Data about places and objects482

• Synthetically generated data483

• Data about systems or products and their behaviors484

485

Dataset Snapshot486

Category Data

Size of Dataset 12 GB
Number of Instances 3,798,242
Number of Labels (explanation) 5,951,278,880
Average Labeles Per Instance 1566.85
Algorithmic Labels 4,629,687,370
Human Labels 1,321,591,510

Dataset Summary: time-series, image and text data with ground truth explanation labels.487

Content Description Each content contains an input data (x), a target label (y) and an explanation488

(a).489

Additional Notes: for SQuAD, the format is slightly different, the input and target are combined490

together to better be fitted to a language model. In addition, the explanation is in the form of a start491

and end position.492

Risk Type(s)493

• No Known Risks494

A.5.3 Dataset Version and Maintenance495

Maintenance Status Regularly Updated - New versions of the dataset have been or will continue496

to be made available.497

Version Details Current Version: 1.0498

Last Updated: 06/2023499

Release Date: 06/2023500

Maintenance Plan In our maintenance plan, our primary focus will be on preserving and leveraging501

the existing data that we have collected. This involves ensuring the integrity and security of the data502

through regular backups, implementing robust data storage practices, and conducting periodic audits503

to identify any potential issues or anomalies. Additionally, we recognize the growing importance504

of graph datasets in various domains. To capitalize on this, we will actively explore and evaluate505

potential graph datasets that align with our needs and objectives. This includes seeking out reliable506
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sources, assessing the quality and relevance of the data, and integrating suitable graph datasets into507

our existing infrastructure. By incorporating graph datasets, we aim to enhance the depth and breadth508

of our analysis, uncover hidden patterns and relationships, and gain valuable insights that can drive509

informed decision-making and optimize our operations. In addition, we are aware that the SQuAD510

dataset does not have a clear classification task and may not align well with the remaining dataset.511

We are also exploring the Contract Understanding Atticus Dataset (CUAD) [44] to see if we can algin512

the document classification task with the ground truth explanation they provide.513

Our maintenance plan thus combines the preservation of existing data with the exploration of new514

graph and text datasets, ensuring a comprehensive and forward-looking approach to data management515

and utilization.516

Versioning: The dataset is versioned based on several criteria. This includes significant updates or517

changes in the data collection process, methodology, or data sources. Corrections or improvements to518

enhance data accuracy or reliability also warrant a new version. Substantial additions or expansions,519

such as new data points or variables, are considered for versioning. User feedback and requests520

for specific modifications are also taken into account. The versioning process ensures transparency,521

traceability, and reproducibility, keeping the dataset relevant and adaptable to evolving needs.522

Updates: The dataset is refreshed or updated based on regular time-based updates, changes in data523

sources or collection methodologies, user feedback, and advancements in technology or analytical524

techniques. This ensures the dataset remains relevant, accurate, and valuable for users in making525

informed decisions.526

Errors: Error handling for the dataset involves systematic procedures to identify and correct errors,527

maintaining data integrity through documentation and tracking, and implementing measures to528

prevent future errors. These criteria ensure data quality, transparency, and reliability for users.529

Feedback: The dataset incorporates criteria for feedback by actively seeking input from users and530

stakeholders. Feedback on the dataset’s content, quality, and usability is welcomed and considered531

for future updates and improvements. This iterative feedback process ensures that the dataset meets532

the needs and expectations of its users, enhancing its relevance and value.533

Next Planned Update(s) Version affected: 1.0534

Next data update: 08/2023535

Next version: 1.1536

Next version update: 08/2023537

Expected Change(s) Updates to Data: Next version of the dataset will possibly include suitable538

graph dataset and modification to the text dataset so that it has a clear classification task. We are539

currently investigating at the CUAD dataset [44].540

A.5.4 Example of Data Points541

Primary Data Modality542

• Image Data543

• Text Data544

• Time Series545

Sampling of Data Points546

• Demo Link547

Data Fields548
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Field Name Field Value Description

x input data The input data, time-series or image or pagraph.
y target label (0/1) The target label of attacked/defect/answerable.
a explanation The ground truth feature to explain the target label.

Typical Data Point This is a typical data point:549

{’x’: tensor([[0.6273, 0.2893, 0.2775, ..., 0.4198, 0.3439, 0.5313],550

[0.6273, 0.2985, 0.2775, ..., 0.4198, 0.3401, 0.5330],551

[0.6273, 0.3055, 0.2775, ..., 0.4198, 0.3439, 0.5292],552

...,553

[0.6273, 0.3265, 0.2775, ..., 0.4198, 0.3467, 0.4995],554

[0.6273, 0.3341, 0.2775, ..., 0.4198, 0.3467, 0.5019],555

[0.6273, 0.3444, 0.2775, ..., 0.4198, 0.3467, 0.5022]]),556

tensor([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,557

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,558

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,559

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,560

0, 0, 0, 0]),561

tensor([[0., 0., 0., ..., 0., 0., 0.],562

[0., 0., 0., ..., 0., 0., 0.],563

[0., 0., 0., ..., 0., 0., 0.],564

...,565

[0., 0., 0., ..., 0., 0., 0.],566

[0., 0., 0., ..., 0., 0., 0.],567

[0., 0., 0., ..., 0., 0., 0.]], dtype=torch.float64)}568

A.5.5 Motivations & Intentions569

Motivations570

Purpose(s)571

• Research572

Domain(s) of Application Machine Learning, Explainability, XAI, Anomaly Detection.573

Motivating Factor(s)574

• Evaluating the quality of explainability methods is challenging due to the lack of ground575

truth explanations, and often rely on hand-crafted heuristics.576

• Re-aligning explainable models with human explanations577

A.5.6 Intended Use578

Dataset Use(s)579

• Safe for research use580

Suitable Use Case(s) Suitable Use Case: One suitable use case for the dataset is in the field581

of explainable artificial intelligence (AI). The dataset, Ground Truth eXplanation (GTX), provides582

a valuable resource for evaluating and improving feature attribution methods. Researchers and583

practitioners in the field can utilize the dataset to benchmark and compare different algorithms,584

assess their alignment with human annotations, and identify areas for improvement. The diverse585
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nature of the dataset, spanning various data types such as time-series, images, and text, allows for586

comprehensive evaluation in different real-world scenarios.587

Unsuitable Use Case(s) Unsuitable Use Case: Suitable Use Case: One suitable use case for the588

dataset is in the field of explainable artificial intelligence (AI). The dataset, Ground Truth eXplanation589

(GTX), provides a valuable resource for evaluating and improving feature attribution methods.590

Researchers and practitioners in the field can utilize the dataset to benchmark and compare different591

algorithms, assess their alignment with human annotations, and identify areas for improvement. The592

diverse nature of the dataset, spanning various data types such as time-series, images, and text, allows593

for comprehensive evaluation in different real-world scenarios.594

Research and Problem Space(s) The specific problem space that the Ground Truth eXplanation595

(GTX) dataset aims to address is the evaluation and improvement of feature attribution methods in596

explainable artificial intelligence (AI). The dataset seeks to tackle the challenge of assessing the597

alignment between feature attributions and human annotations, providing a quantitative benchmark598

for evaluating the quality of these methods.599

Citation Guidelines Guidelines & Steps: Please cite our work as follows (to be updated later):600

BiBTeX:601

@article{snp2023,602

title={Ground Truth eXplanation Datset},603

author={../},604

journal={...},605

year={2023}606

}607

A.5.7 Access, Rentention, & Wipeout608

Access609

Access Type610

• External - Open Access611

Documentation Link(s)612

• GitHub URL613

Policy Link(s)614

• Direct download URL: link615

Code to download data: https://github.com/xjiae/HDDDS/blob/main/setup.sh616

Retention617

Duration Infinite duration.618

A.5.8 Provenance619

Collection620

Method(s) Used621

• Taken from other existing datasets622
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Methodology Detail(s) Collection Type623

Source: HAI, SWaT, WADI, MVTec, SQuAD.624

Is this source considered sensitive or high-risk? [No]625

Dates of Collection: [05 2023 - 06 2023]626

Primary modality of collection data:627

• Image Data628

• Text Data629

• Time Series630

Update Frequency for collected data:631

• Static632

Source Description(s)633

• Source: Hardware-In-the-Loop-based Augmented ICS Security Dataset (HAI) The HAI634

dataset was collected from a realistic industrial control system (ICS) testbed, augmented635

with a Hardware-In-the-Loop (HIL) simulator for 379.3 hours. The HIL simulator emulates636

two crucial components of the power generation domain: steam-turbine power generation637

and pumped-storage hydropower generation, with a total of m = 86 features.638

• Source: SWaT, WADI. The Secure Water Treatment testbed serves as a scaled-down replica639

of a real-world industrial water treatment plant. It operates at a reduced capacity, producing640

five gallons per minute of water for over 11 days. The treatment process involves the641

utilization of membrane-based ultrafiltration and reverse osmosis units for effective water642

filtration, comprising of (m = 51) features in total. WADI is an extension of the SWaT643

testbed featuring additional components and functionalities such as chemical dosing systems,644

booster pumps and valves, as well as instrumentation and analyzers. It is collected over 16645

days with (m = 127) dimensions.646

• Source: MVTec is an industrial inspection dataset designed for benchmarking defects647

detection methods. It consists of a 15 categories with a total of more than 5000 high-648

resolution (3,1024, 1024) images. Each category includes a set of defect-free training649

images and a test set containing images with different types of defects, as well as defect-free650

images. The dataset provides pixel-accurate ground truth annotations for the defect regions,651

which have been carefully annotated and reviewed by the authors to align with human652

interpretation of real-world defects.653

• Source: SQuAD is a widely used reading comprehension dataset that includes 107,785654

question-answer pairs based on 536 Wikipedia articles. The dataset was generated by655

crowdworkers who formulated questions and provided specific text segments or spans as656

answers. The answers have undergone rigorous crowdworkers selection, additional answer657

collection, and manual crosscheck processes, making them reliable ground truth explanations658

for the corresponding questions.659

Collection Cadence Static: Data was collected once from single or multiple sources.660

Data Integration661

Source Included Fields662

Data fields of each datasets were collected and are included in the dataset. We found the detailed663

description for HAI (Table 15 and 16) and SWaT (Table 17) and consolidate them to the tables664

below. For WADI, we did not find any detailed description. It is an extension of SWaT hence665
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they share similar features. We attach the testbed information https://itrust.sutd.edu.sg/666

itrust-labs-home/itrust-labs_wadi/.667

Data Processing Collection Method or Source668

Description: In our data processing pipeline, we employ different techniques based on the data type.669

For timeseries data, we apply normalization to ensure it falls within the range of [0, 1], enabling670

better comparison and analysis across different variables. On the other hand, we do not perform any671

additional processing for image and text data, as they are inherently suitable for analysis without672

preprocessing steps.673

When it comes to annotations, we have a dedicated process to handle them. For ground truth674

annotation files, which are typically stored in formats such as Excel or PDF, we extract the relevant675

information such as start time, end time, and the sensors involved in the attack. We then align this676

information with the raw data to ensure accurate labeling of explanations. This process allows us to677

establish a clear link between the annotated events and the underlying data, facilitating the evaluation678

and analysis of the explanations provided by our models.679

By leveraging these data processing techniques, we ensure that the data is appropriately prepared and680

annotated for further analysis and evaluation. This enables us to derive valuable insights and make681

informed decisions based on the processed and labeled data.682

Methods employed: Normalization.683

Tools or libraries: Min-Max scaling.684

A.5.9 Collection Criteria685

Data Selection686

• Collection Method of Source: We select the dataset based on availability of ground truth687

of explanations.688

Data Inclusion689

• Collection Method of Source: Same as above.690

Data Exclusion691

• Collection Method of Source: We exclude data that does not have ground truth for692

explanation.693

A.5.10 Relationship to Source694

Use & Utility(ies)695

• Dataset: The resulting Ground Truth eXplanation (GTX) dataset is closely aligned with696

the purposes, motivations, and intended use of the upstream sources (HAI, WADI, SWaT,697

MVTec, and SQuAD). Through meticulous cleaning and preprocessing of annotation files,698

the dataset provides accurate ground truth information for feature attribution evaluation699

in explainable AI. This alignment ensures that the GTX dataset is a valuable resource for700

benchmarking, model development, and educational purposes, enabling advancements in701

transparency, interpretability, and trustworthiness of AI systems across domains.702

Benefit and Value(s)703

• Dataset: The Ground Truth eXplanation (GTX) dataset provides consumers with curated and704

cleaned annotations, consolidating data from multiple sources. Compared to the upstream705

sources, it offers enhanced data quality, convenience, and relevance for evaluating and706

improving feature attribution methods in explainable AI.707
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Limitation(s) and Trade-Off(s)708

• Dataset: While the resulting Ground Truth eXplanation (GTX) dataset offers benefits, it709

also has certain limitations compared to the upstream sources. Firstly, the GTX dataset710

may have reduced granularity compared to the original upstream sources, as it involves711

cleaning and preprocessing steps that can result in some loss of detailed information.712

Secondly, the dataset’s scope and coverage may be limited to specific features or attributes713

relevant to feature attribution evaluation, potentially excluding certain aspects present in the714

upstream sources. Additionally, the GTX dataset’s generalizability may be constrained by715

the specific contexts and domains of the upstream sources, which may not fully represent716

the diverse range of applications and scenarios. It is important for consumers to consider717

these limitations and assess whether the available data adequately meets their specific needs718

and requirements.719

A.5.11 Version and Maintenance720

• Release date: 06/2023721

• Link to dataset: GTX + 1.0722

• Status: [Actively Maintained]723

• Size of Dataset: 12 GB724

• Number of Instances: 3,798,242725

726

Note(s) and Caveat(s) We may update the dataset content if we find suitable graph dataset, but it727

will not affect the exitsing datasets.728

Cadence729

• Static730

Last and Next Update(s)731

• Date of last update: 14/06/2023732

• Total data points affected: 3,798,242733

• Data points updated: 3,798,242734

• Data points added: 3,798,242735

• Data points removed: 0736

• Date of next update: 08/08/2023737

Changes on Update(s)738

• Dataset: Update five real-world datasets.739

A.5.12 Extended Use740

Use with Other Data741

Safety Level742

• Safe to use with other data743

Known Safe Dataset(s) or Data Type(s) Data Type: time-series, image, and text.744
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Best Practices When using the Ground Truth eXplanation (GTX) dataset with other datasets or745

data types, it is important to ensure data compatibility, identify common features, validate and746

cross-reference the data, consider contextual relevance, document assumptions and limitations, and747

perform exploratory analysis for insights.748

Known Unsafe Dataset(s) or Data Type(s) N/A749

A.5.13 Forking & Sampling750

Safety Level751

• Safe to form and/or sample752

Acceptable Sampling Method(s)753

• Cluster Sampling754

• Haphazard Sampling755

• Multi-stage sampling756

• Random Sampling757

• Retrospective Sampling758

• Stratified Sampling759

• Systematic Sampling760

• Weighted Sampling761

• Unknown762

• Unsampled763

Best Practice(s) When forking or sampling the GTX dataset, best practices include clearly defining764

sampling criteria, maintaining representative samples, documenting the sampling methodology,765

considering sample size and statistical power, and validating the sample.766

Risk(s) and Mitigation(s) No known risk for sampling.767

A.5.14 Use in ML or AI Systems768

Dataset Use(s)769

• Training770

• Testing771

• Validation772

• Development or Production Use773

• Fine Tuning774

Notable Feature(s) The GTX dataset exhibits notable feature distributions and explicit relationships775

between individual instances. Through careful curation, the dataset captures diverse real-world776

data types such as time-series, image, and text, each with its distinct feature distributions. These777

distributions may reveal patterns, trends, or variations in the data, providing valuable insights into778

the characteristics of different instances. Additionally, explicit relationships between individual779

instances can be identified through the ground truth annotations, which establish causal connections780

between features and the corresponding labels. These relationships help to elucidate the impact and781

importance of specific features in explaining the ground truth, contributing to the evaluation and782

improvement of feature attribution methods in explainable AI. By leveraging the feature distributions783

and explicit relationships within the dataset, researchers, practitioners, and educators can gain a784

deeper understanding of the data and make informed decisions in their respective domains.785
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Usage Guideline(s) Usage Guidelines: When using the GTX dataset, consumers should comply786

with licensing and terms of use, provide proper attribution and citation, aim for reproducibility and787

transparency, practice responsible and ethical use, and foster communication and collaboration within788

the community.789

Approval Steps: N/A.790

Reviewer: Provide the name of a reviewer for publications referencing this dataset.791

Distribution(s)792

Set Number of data points

Train 70%
Test 20%
Validation 10%

Splits: Recommand splts.793

Known Correlation(s) All the features are correlated with each other in a given instance. Hence,794

user should treat them as a complete data point when process them.795

A.5.15 Transformations796

Synopsis797

Transformation(s) Applied798

• Cleaning Missing Values799

• Normalization800

Field(s) Transformed Transformation Type801

All features in time-series dataset are preprocessed. But user can also specified “raw” for contents to802

get the original dataset.803

Library(ies) and Method(s) Used Transformation Type804

Method: For timeseries data, we apply normalization to ensure it falls within the range of [0, 1],805

enabling better comparison and analysis across different variables.806

Platforms, tools, or libraries: - Platform, tool, or library: sklearn.preprocessing.MinMaxScaler.807

Transformation Results: All time-series values falls within the range of [0, 1].808

A.5.16 Breakdown of Transformations809

Cleaning Missing Value(s) We fill missing sensor values with mean of the corresponding column.810

Method(s) Used To handle missing sensor values, we replace them with the mean value of the811

corresponding column.812

Platforms, tools, or libraries813

• Platform, tool, or library: pandas.DataFrame.fillna814
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A.5.17 Annotations & Labeling815

Annotation Workforce Type816

• Annotation Target in Data817

• Machine-Generated818

• Annotations819

A.5.18 Annotation Characteristic(s)820

Annotation Number

Total number of annotations 1,321,591,510
Average annotations per example 17,962

Annotation Description(s) The annotations applied to the dataset were manually performed by821

the author. The author meticulously reviewed the annotation file, ensuring precise alignment of822

the start and end times of each attack/defect. They annotated the affected features, indicating the823

specific features impacted during each attack. The annotation process involved a thorough analysis824

and interpretation of the data to ensure accuracy and consistency. For non-attacked/defect instances,825

an all zeroes annotation is generated automatically. No specific platforms, tools, or libraries were826

mentioned in the provided information.827

Annotation Distribution(s) There are two classes of annotations, 1 for explanatory feature and 0828

otherwise. We report the ratio for class 1.829

Annotation Type Number

HAI, column-wise 1,034,580 (1.17%)
SWaT, column-wise 2,785,671 (2.10%)
WADI, column-wise 652,018 (1.52%)
MVTec, pixel-wise 1,317,011,456 (4.38%)
SQuAD, start-end position pair 107,785 (3.10%)

Annotation summary: We summarize the explanatory feature count and ratio.830

A.5.19 Terms of Art831

Concepts and Definitions referenced in this Data Card832

Term of Art Definition: feature attribution833

Interpretation: Feature attributions indicate how much each feature in your model contributed to the834

predictions for each given instance.835
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Features Min Value Max Value Unit Description
P1_B2004 0 10 bar Heat-exchanger outlet pressure setpoint
P1_B2016 0 10 bar Pressure demand for thermal power output control
P1_B3004 0 720 mm Water level setpoint (return water tank)
P1_B3005 0 2500 l/h Discharge flowrate setpoint (return water tank)
P1_B4002 0 100 °C Heat-exchanger outlet temperature setpoint
P1_B4005 0 100 % Temperature PID control output
P1_B400B 0 2500 l/h Water outflow rate setpoint (heating water tank)
P1_B4022 0 40 °C Temperature demand for thermal power output control
P1_FCV01D 0 100 % Position command for the FCV01 valve
P1_FCV01Z 0 100 % Current position of the FCV01 valve
P1_FCV02D 0 100 % Position command for the FCV02 valve
P1_FCV02Z 0 100 % Current position of the FCV02 valve
P1_FCV03D 0 100 % Position command for the FCV03 valve
P1_FCV03Z 0 100 % Current position of the FCV03 valve
P1_FT01 0 2500 mmH2O Measured flowrate of the return water tank
P1_FT01Z 0 3190 l/h Water inflow rate converted from P1_FT01
P1_FT02 0 2500 mmH2O Measured flowrate of heating water tank
P1_FT02Z 0 3190 l/h Water outflow rate conversion from P1_FT02
P1_FT03 0 2500 mmH2O Measured flowrate of the return water tank
P1_FT03Z 0 3190 l/h Water outflow rate converted from P1_FT03
P1_LCV01D 0 100 % Position command for the LCV01 valve
P1_LCV01Z 0 100 % Current position of the LCV01 valve
P1_LIT01 0 720 mm Water level of the return water tank
P1_PCV01D 0 100 % Position command for the PCV01 valve
P1_PCV01Z 0 100 % Current position of the PCV01 valve
P1_PCV02D 0 100 % Position command for the PCV2 valve
P1_PCV02Z 0 100 % Current position of the PCV02 valve
P1_PIT01 0 10 bar Heat-exchanger outlet pressure
P1_PIT01_HH 0 10 bar Highest outlet pressure of the heat-exchanger
P1_PIT02 0 10 bar Water supply pressure of the heating water pump
P1_PP01AD 0 1 Boolean Start command of the main water pump PP01A
P1_PP01AR 0 1 Boolean Running state of the main water pump PP01A
P1_PP01BD 0 1 Boolean Start command of the main water pump PP01B
P1_PP01BR 0 1 Boolean Running state of the main water pump PP01B
P1_PP02D 0 1 Boolean Start command of the heating water pump PP02
P1_PP02R 0 1 Boolean Running state of the heating water pump PP02
P1_PP04 0 100 % Control out of the cooler pump
P1_PP04SP 0 100 °C Cooler temperature setpoint
P1_SOL01D 0 1 Boolean Open command of the main water tank supply valve
P1_SOL03D 0 1 Boolean Open command of the main water tank drain valve
P1_STSP 0 1 Boolean Start/stop command of the boiler DCS
P1_TIT01 -50 150 °C Heat-exchanger outlet temperature
P1_TIT02 -50 150 °C Temperature of the heating water tank
P1_TIT03 -50 150 °C Temperature of the main water tank
P2_24Vdc 0 30 Voltage DCS 24V Input Voltage
P2_ATSW_Lamp 0 1 Boolean Lamp of the Auto SW
P2_AutoGo 0 1 Boolean Auto start button
P2_AutoSD 0 3200 RPM Auto speed demand
P2_Emerg 0 1 Boolean Emergency button
P2_MASW 0 1 Boolean Manual(1)/Auto(0) SW
P2_MASW_Lamp 0 1 Boolean Lamp of Manual SW
P2_ManualGO 0 1 Boolean Manual start button
P2_ManualSD 0 3200 RPM Manual speed demand
P2_OnOff 0 1 Boolean On/off switch of the turbine DCS
P2_RTR 0 2880 RPM RPM trip rate
P2_SCO 0 100000 - Control output value of the speed controller
P2_SCST -100 100 RPM Speed change proportional to frequency change of the STM
P2_SIT01 0 3200 RPM Current turbine RPM measured by speed probe
P2_TripEx 0 1 Boolean Trip emergency exit button
P2_VIBTR01 -10 10 µm Shaft-vibration-related Y-axis displacement near the 1st mass wheel
P2_VIBTR02 -10 10 µm Shaft-vibration-related X-axis displacement near the 1st mass wheel
P2_VIBTR03 -10 10 µm Shaft-vibration-related Y-axis displacement near the 2nd mass wheel
P2_VIBTR04 -10 10 µm Shaft-vibration-related X-axis displacement near the 2nd mass wheel
P2_VT01 11 12 rad/s Phase lag signal of the key phasor probe
P2_VTR01 -10 10 µm Preset vibration limit for the sensor P2_VIBTR01
P2_VTR02 -10 10 µm Preset vibration limit for the sensor P2_VIBTR02
P2_VTR03 -10 10 µm Preset vibration limit for the sensor P2_VIBTR03
P2_VTR04 -10 10 µm Preset vibration limit for the sensor P2_VIBTR03

Table 15: HAI feature description.
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P3_FIT01 0 27648 - Flow rate of water flowing into the upper water tank
P3_LCP01D 0 27648 - Speed command for the pump LCP01
P3_LCV01D 0 27648 - Position command for the valve LCV01
P3_LH01 0 70 % High water level set-point
P3_LIT01 0 90 % Water level of the upper water tank
P3_LL01 0 70 % Low water level set-point
P3_PIT01 0 27648 - Pressure of water flowing into the upper water tank
P4_HT_FD -0.02 0.02 mHz Frequency deviation of HTM
P4_HT_PO 0 100 MW Output power of HTM
P4_HT_PS 0 100 MW Scheduled power demand of HTM
P4_LD 0 500 MW Total electrical load demand
P4_ST_FD -0.02 0.02 Hz Frequency deviation of STM
P4_ST_GOV 0 27648 - Gate opening rate of STM
P4_ST_LD 0 500 MW Electrical load demand of STM
P4_ST_PO 0 500 MW Output power of STM
P4_ST_PS 0 500 MW Scheduled power demand of STM
P4_ST_PT01 0 27648 - Digital value of steam pressure of STM
P4_ST_TT01 0 27648 - Digital value of steam temperature of STM

Table 16: HAI feature description continued.
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Feature Type Description
FIT-101 Sensor Flow meter; Measures inflow into raw water tank.
LIT-101 Sensor Level Transmitter; Raw water tank level.
MV-101 Actuator Motorized valve; Controls water flow to the raw water tank.
P-101 Actuator Pump; Pumps water from raw water tank to second stage.
P-102 (backup) Actuator Pump; Pumps water from raw water tank to second stage.
AIT-201 Sensor Conductivity analyser; Measures NaCl level.
AIT-202 Sensor pH analyser; Measures HCl level.
AIT-203 Sensor ORP analyser; Measures NaOCl level.
FIT-201 Sensor Flow Transmitter; Control dosing pumps.
MV-201 Actuator Motorized valve; Controls water flow to the UF feed water tank.
P-201 Actuator Dosing pump; NaCl dosing pump.
P-202 (backup) Actuator Dosing pump; NaCl dosing pump.
P-203 Actuator Dosing pump; HCl dosing pump.
P-204 (backup) Actuator Dosing pump; HCl dosing pump.
P-205 Actuator Dosing pump; NaOCl dosing pump.
P-206 (backup) Actuator Dosing pump; NaOCl dosing pump.
DPIT-301 Sensor Differential pressure indicating transmitter; Controls the back-wash process.
FIT-301 Sensor Flow meter; Measures the flow of water in the UF stage.
LIT-301 Sensor Level Transmitter; UF feed water tank level.
MV-301 Actuator Motorized Valve; Controls UF-Backwash process.
MV-302 Actuator Motorized Valve; Controls water from UF process to De-Chlorination unit.
MV-303 Actuator Motorized Valve; Controls UF-Backwash drain.
MV-304 Actuator Motorized Valve; Controls UF drain.
P-301 (backup) Actuator UF feed Pump; Pumps water from UF feed water tank to RO feed water tank via UF filtration.
P-302 Actuator UF feed Pump; Pumps water from UF feed water tank to RO feed water tank via UF filtration.
AIT-401 Sensor RO hardness meter of water.
AIT-402 Sensor ORP meter; Controls the NaHSO3dosing(P203), NaOCl dosing (P205).
FIT-401 Sensor Flow Transmitter ; Controls the UV dechlorinator.
LIT-401 Actuator Level Transmitter; RO feed water tank level.
P-401 (backup) Actuator Pump; Pumps water from RO feed tank to UV dechlorinator.
P-402 Actuator Pump; Pumps water from RO feed tank to UV dechlorinator.
P-403 Actuator Sodium bi-sulphate pump.
P-404 (backup) Actuator Sodium bi-sulphate pump.
UV-401 Actuator Dechlorinator; Removes chlorine from water.
AIT-501 Sensor RO pH analyser; Measures HCl level.
AIT-502 Sensor RO feed ORP analyser; Measures NaOCl level.
AIT-503 Sensor RO feed conductivity analyser; Measures NaCl level.
AIT-504 Sensor RO permeate conductivity analyser; Measures NaCl level.
FIT-501 Sensor Flow meter; RO membrane inlet flow meter.
FIT-502 Sensor Flow meter; RO Permeate flow meter.
FIT-503 Sensor Flow meter; RO Reject flow meter.
FIT-504 Sensor Flow meter; RO re-circulation flow meter.
P-501 Actuator Pump; Pumps dechlorinated water to RO.
P-502 (backup) Actuator Pump; Pumps dechlorinated water to RO.
PIT-501 Sensor Pressure meter; RO feed pressure.
PIT-502 Sensor Pressure meter; RO permeate pressure.
PIT-503 Sensor Pressure meter;RO reject pressure.
FIT-601 Sensor Flow meter; UF Backwash flow meter.
P-601 Actuator Pump; Pumps water from RO permeate tank to raw water tank (not used for data collection).
P-602 Actuator Pump; Pumps water from UF back wash tank to UF filter to clean the membrane.

Table 17: SWaT feature description.
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