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Abstract
Stability guarantees are important for feature at-
tributions, but existing certification methods rely
on smoothed classifiers and yield overly conser-
vative bounds. To address this, we introduce the
concept of soft stability and propose a sampling-
based certification algorithm that is both model-
agnostic and sample-efficient. Interestingly, we
demonstrate that mild smoothing can improve the
soft stability certificate without incurring the se-
vere accuracy degradation that heavily smoothed
classifiers typically exhibit. To explain this phe-
nomenon, we leverage techniques from Boolean
function analysis to characterize and provide in-
sights into the impact of smoothing on classifier
behavior. We validate our approach through exper-
iments on vision and language tasks with various
feature attribution methods.

1. Introduction
Powerful machine learning models are increasingly de-
ployed in practice. However, their opacity presents a major
challenge in being adopted in high-stake domains, where
transparent explanations are needed in decision making. In
healthcare, for instance, doctors require insights into the
diagnostic steps to trust the model and integrate them into
clinical practice effectively (Klauschen et al., 2024). Simi-
larly, in the legal domain, attorneys must ensure that deci-
sions reached with the assistance of models meet stringent
judicial standards (Richmond et al., 2024).

There has been great interest in using explanation methods
to understand opaque model behaviors. One popular class of
explanation methods are feature attributions (Lundberg and
Lee, 2017; Ribeiro et al., 2016), which aim to identify the
most important input features that contribute to a model’s
prediction. We show such an example in Figure 1 using the
top 44% features selected by LIME (Ribeiro et al., 2016).

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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Predict: Penguin won’t change when adding up to k=1 patchHard Stability:

w.h.p, Predict: Penguin won’t change when adding up to k=5 patchesSoft Stability:

k=1 k=2 k=3 k=4 k=5

Penguin
Added
patches

Actually all
perturbations
have correct
predictions

Original LIME

Penguin

Figure 1. A visual example of certified radii by hard stability vs.
soft stability. For an image of penguin masked to show only top
44% explanation by LIME, hard stability certifies that adding 1
patch won’t change the prediction, whereas soft stability can certify
adding up to 5 patches with a probabilistic guarantee.

A common way to evaluate an attribution method is to test
whether the selected features contain enough information to
recover the original prediction (Nauta et al., 2023; Wagner
et al., 2019). The selection in this example can do so, but
including a single additional patch can drastically alter the
predicted label. Despite the complexity of modern classi-
fiers, this behavior is often undesirable because it suggests
that providing more information can paradoxically decrease
the model’s confidence (Yeh et al., 2019).

Such phenomenon has sparked interest in quantifying how
model predictions vary with attributions, such as the effect
of adding or removing features (Samek et al., 2016; Wu
et al., 2020) and the impact of the selection’s shape (Hase
et al., 2021; Rong et al., 2022). However, most existing
works focus on empirical measures (Agarwal et al., 2022),
with limited formal, mathematical guarantees on the robust-
ness of attribution-induced predictions.

To address this gap, Xue et al. (2024) consider stability as
a formal certification framework for feature selection. In
particular, a stable explanation is one in which adding a
small number of features does not alter the model’s predic-
tion, thereby eliminating the undesirable behavior illustrated
in Figure 2. This property is quantified by its certified radius,
which measures the maximum number of additional features
that can be included while preserving the prediction.
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Probabilistic Stability Guarantees for Feature Attributions

However, certifying stability is non-trivial. If the classifier
lacks favorable properties, one must exhaustively check pre-
dictions for all possible feature additions, a computationally
intractable task. To overcome this, Xue et al. (2024) apply
smoothing techniques from the adversarial robustness (Co-
hen et al., 2019; Levine and Feizi, 2021) to transform ar-
bitrary models into smoothed classifiers with convenient
properties for efficiently computing certified radii. However,
these radii are often small and apply only to the smoothed
classifier rather than the original model. Moreover, smooth-
ing inherently degrades a classifier’s accuracy. While these
guarantees are meaningful, they remain conservative and
impose a harsh accuracy trade-off on the smoothed classifier.

In this work, we present a new variant of stability that we
call soft stability. We define this in contrast to that of Xue
et al. (2024), which we refer to as hard stability from this
point forward. While hard stability certifies whether all
small perturbations to an attribution yield the same predic-
tion, soft stability instead quantifies how often the prediction
remains consistent. This is a probabilistic relaxation of hard
stability that avoids the need to smooth the classifier. In
general, probabilistic guarantees are flexible to apply and
efficient to compute compared to their hard variants. Con-
sequently, they have gained traction in machine learning
applications such as medical imaging (Fayyad et al., 2024),
drug discovery (Arvidsson McShane et al., 2024), and au-
tonomous driving (Lindemann et al., 2023). Conveniently,
probabilistic guarantees are also often formulated in terms
of confidence, which is widely explored in machine learn-
ing and explainability literature (Angelopoulos et al., 2023;
Atanasova, 2024; Carvalho et al., 2019).

In this work, we advance the understanding of robust feature-
based explanations by extending probabilistic guarantees
to stability. Our analyses and experiments provide new
insights into attribution robustness, especially on the role of
smoothed classifiers. Our key contributions are as follows.

Soft Stability is Model-Agnostic and Sample-Efficient
We introduce soft stability as a measure for certifying the ro-
bustness of feature attributions. Unlike hard stability, which
relies on a destructive smoothing process and yields conser-
vative guarantees, soft stability applies non-destructively to
any classifier and is sample-efficient to certify. This con-
tributes to the sparse literature on formal guarantees for
feature attributions. We further examine the computational
challenges of hard stability and introduce an algorithm for
certifying soft stability in Section 3.

Mild Smoothing Improves Soft Stability Interestingly,
a milder version of smoothing from Xue et al. (2024) en-
hances a classifier’s soft stability guarantees without sig-
nificantly compromising accuracy. Using techniques from
Boolean function analysis (O’Donnell, 2014), we provide

Candon (70.78%)
Artichoke (29.13%)

Artichoke (50.19%)
Candon (49.74%)

Candon (92.09%)
Artichoke (0.08%)

f

f

f

Unstable
explanation

Adding 3
patches

Figure 2. An unstable selection of features from SHAP. Although
the image masked by the original explanation makes the same
prediction as the original image (the second row vs. the first row),
adding one patch to the explanation changes the highest predicted
class from “candon” to “artichoke”.

a novel characterization of smoothing and develop new an-
alytic tools to establish theoretical results. This expands
the robustness toolkit beyond standard Lipschitz-based ap-
proaches and provides new insights for analyzing feature
attributions, which we explore in more detail in Section 4.

Empirical Validation We conduct experiments on vision
and language tasks to validate our theoretical developments.
Specifically, we compare the guarantees of soft and hard
stability and analyze the effect of smoothing on classifier
performance. These experiments provide empirical support
for our claims and are detailed in Section 5.

2. Background and Overview
First, we will give an overview of feature attributions. We
then discuss the existing work on hard stability and intro-
duce the notion of soft stability.

2.1. Feature Attributions as Explanations

Feature attributions are widely used in explainability due to
their simplicity and generality. To formalize our discussion,
we consider classifiers of the form f : Rn → Rm, which
map n-dimensional inputs to m logits representing class
probabilities. A feature attribution method assigns a score
αi to each input feature xi to indicate its importance to the
model’s prediction f(x). The definition of importance de-
pends on the method. In gradient-based methods (Simonyan
et al., 2013; Sundararajan et al., 2017), each αi might be
dependent on ∇xif(x), whereas in Shapley value-based
methods (Lundberg and Lee, 2017; Sundararajan and Na-
jmi, 2020), the αi might to measure the Shapley value at xi.
Although attribution scores are typically real-valued, it is
common to simplify them to binary values (α ∈ {0, 1}n)
by selecting only the top-k most relevant features (Ribeiro
et al., 2016). This aligns with the human preference for
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Probabilistic Stability Guarantees for Feature Attributions

concise and interpretable explanations (Miller, 2019).

2.2. Hard Stability and Soft Stability

Many evaluation metrics exist for binary-valued feature attri-
butions (Agarwal et al., 2022). To compare two attributions
α, α′ ∈ {0, 1}n, it is common to study whether they in-
duce the same prediction with respect to a given classifier
f : Rn → Rm and input x ∈ Rn. To formalize this, let
(x ⊙ α) ∈ Rn be the α-masked variant of x, where ⊙ is
the coordinate-wise product of two vectors. Next, we write
f(x⊙α) ∼= f(x⊙α′) to mean that the masked inputs x⊙α
and x⊙ α′ have the same prediction on f , which holds if:

argmax
k

f(x⊙ α)k = argmax
k′

f(x⊙ α′)k′ .

This form of evaluating feature sets is related to notions of
fidelity, consistency, and preservation in the explainability
literature (Nauta et al., 2023), but the specific terminology
and definition vary by author and source. Furthermore,
attribution-masked evaluation is more commonly seen in
vision tasks (Jain et al., 2022), though it is also present in
language modeling (Lyu et al., 2023; Ye et al., 2024).

It is often desirable that two “similar” attributions induce
the same prediction (Yeh et al., 2019). Although various
measures of similarity exist, we are interested in the notion
of additive perturbations. Specifically, we conceptualize a
perturbed attribution α′ as one that contains more informa-
tion (features) than α, where the desiderata is that adding
more features to a “good quality” α should not easily alter
the prediction. We formalize such perturbations as follows.

Definition 2.1 (Additive Perturbations). For an attribution
α and radius r > 0, define its r-additive perturbation set as:

∆r(α) = {α′ ∈ {0, 1}n : α′ ≥ α, ∥α′ − α∥0 ≤ r},

where α′ ≥ α iff each α′
i ≥ αi and ∥·∥0 denotes the ℓ0

norm, which measures the number of non-zero coordinates.

Intuitively, ∆r(α) represents the set of attributions that are
at least as informative as α, differing by at most r features.
This allows us to study the robustness of explanations by
analyzing whether small modifications in feature selection
affect the model’s prediction. A natural way to formalize
such robustness is through stability: an attribution α should
be considered stable if adding a small number of features
does not alter the classifier’s decision. We now define hard
stability, which reinforces this concept strictly.

Definition 2.2 (Hard Stability (Xue et al., 2024)). For a
classifier f and input x, the explanation α is hard-stable 1

with radius r if: f(x⊙ α′) ∼= f(x⊙ α) for all α′ ∈ ∆r.

1Xue et al. (2024) equivalently call this property “incrementally
stable” and more broadly define “stable” as a stricter property.

However, hard stability is non-trivial to certify, and existing
algorithms suffer from costly trade-offs that we later discuss
in Section 3.1. This motivates us to investigate relaxations
that admit efficient certification algorithms while remain-
ing practically useful. In particular, we are motivated by
the increasing usage of probabilistic guarantees in domains
such as medical imaging (Fayyad et al., 2024), drug dis-
covery (Arvidsson McShane et al., 2024), and autonomous
driving (Lindemann et al., 2023), which are often formu-
lated in terms of confidence (Atanasova, 2024; Carvalho
et al., 2019). We thus present a probabilistic relaxation of
hard stability, quantified by the stability rate, as follows.
Definition 2.3 (Soft Stability). For a classifier f and input
x, define the stability rate of attribution α at radius r as:

τr(f, x, α) = Pr
α′∼∆r

[f(x⊙ α′) ∼= f(x⊙ α)],

where α′ ∼ ∆r is uniformly sampled.

A higher stability rate τr indicates a greater likelihood that
a perturbation of at most r features preserves the predic-
tion. Notably, soft stability generalizes hard stability, as the
extreme case of τr = 1 recovers the hard stability condition.

Alternative Formulations Our definition of soft stabil-
ity is one of many possible variants. For example, one
might define τ=k as the probability that the prediction re-
mains unchanged under an exactly k-sized perturbation of
α. A conservative variant could then take the minimum
over τ=1, . . . , τ=r. The choice of formulation affects the
implementation of the certification algorithm.

3. Certifying Soft Stability
We first discuss the limitations of existing methods for certi-
fying hard stability. We then introduce a sampling-based al-
gorithm to efficiently certify the soft stability of any model.

3.1. Challenges in Certifying Hard Stability

Existing approaches to certifying hard stability rely on a clas-
sifier’s Lipschitz constant, which is a measure of function
smoothness. While useful for robustness certification (Co-
hen et al., 2019), the Lipschitz constant is often intractable
to compute (Virmaux and Scaman, 2018) and challenging
to approximate (Fazlyab et al., 2019; Xue et al., 2022). To
address this, Xue et al. (2024) derive smoothed classifiers,
which have known Lipschitz constant by construction. Start-
ing with any classifier f , one defines the smoothed classifier
f̃ as the expectation over randomly perturbed inputs:

f̃(x) =
1

N

[
f(x(1)) + · · ·+ f(x(N))

]
,

where x(1), . . . , x(N) ∼ D(x) are sampled perturbations
of x. If D is properly chosen, then the smoothed classifier
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f̃ has a Lipschitz constant κ that is explicitly known in
expectation.

Since κ measures a function’s sensitivity to input pertur-
bations, a smaller κ implies a smoother (i.e., more robust)
classifier. Crucially, because f̃ is designed to have a known
Lipschitz constant, this enables efficient computation of
hard stability guarantees: in general, a smaller κ leads to
larger certified radii.

Smoothing has Performance Trade-offs A key limita-
tion of smoothing-based certificates is that the stability guar-
antees apply to f̃ , not the original classifier f . Additionally,
since smoothing relies on evaluation with perturbed inputs,
it inevitably leads to accuracy degradation compared to f .
This relation between smoothness, certified radii, and accu-
racy follows a well-known trade-off:

Smoothness(f̃) ≈ CertRadius(f̃) ≈
(
1− Accuracy(f̃)

)
,

where ≈ indicates a general trend rather than an exact nu-
merical relation. In other words, increased smoothness leads
to larger certified radii (stronger hard stability guarantees)
but at the cost of accuracy. This trade-off arises because
excessive smoothing reduces a model’s sensitivity, making
it harder to distinguish between classes (Anil et al., 2019;
Huster et al., 2019).

Smoothing-based Hard Stability is Conservative Even
when smoothing-based certification is feasible, the resulting
certified radii are often conservative. The main reason is
that these radii depend on a global property (the Lipschitz
constant κ) to make local guarantees about feature perturba-
tions. In general, the certified radius of f̃ scales as O(1/κ)
for any input x and attribution α.

3.2. Estimating Soft Stability

Unlike hard stability, which requires destructively smooth-
ing the classifier and often yields conservative guarantees,
soft stability can be estimated efficiently for any classifier.
The key measure, the stability rate τr, can be efficiently
estimated via the following algorithm.

Theorem 3.1 (Estimation Algorithm). Let N ≥ log(2/δ)
2ε2 for

any ε > 0 and δ > 0. For a classifier f , input x, explanation
α, and radius r, define the stability rate estimator:

τ̂r =
1

N

N∑
i=1

1
[
f(x⊙ α(i)) ∼= f(x⊙ α)

]
,

where α(1), . . . , α(N) ∼ ∆r(α) are i.i.d. samples. Then,
with probability ≥ 1− δ, it holds that |τr − τ̂r| ≤ ε.

Proof. Apply Hoeffding’s inequality to estimate the mean of
independently distributed Bernoulli X(1), . . . , X(N), where
let each X(i) = 1[f(x⊙ α(i)) ∼= f(x⊙ α)].
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Figure 3. (Algorithm for Estimating Stability Rate.) Given an
explanation α: (1) Sample masks from ∆r(α) by adding up to
r patches. (2) Predict on the masked images and compute the
stability rate τr , the fraction of predictions matching f(x ⊙ α).
To ensure 1 − δ confidence that the computed τr is within ±ϵ
tolerance, we sample at least N ≥ log(2/δ)

2ϵ2
masks.

We illustrate this algorithm in Figure 3. Notably, the re-
quired sample size N depends only on ε and δ, since τr
is a one-dimensional statistic. Because N is independent
of f , the estimation algorithm scales linearly in the cost of
evaluating f . Moreover, certifying soft stability does not
require deriving a smoothed classifier through a destructive
smoothing classifier. Unlike hard stability, which applies to
the smoothed classifier f̃ , soft stability provides robustness
guarantees directly on the original classifier f . This elimi-
nates the need for a destructive smoothing process that risks
degrading accuracy.

4. Mild Smoothing Improves Soft Stability
Smoothing is commonly used to certify robustness guar-
antees, such as hard stability (Xue et al., 2024), but often
at a high cost to the smoothed classifier’s accuracy. In-
terestingly, however, we find that a milder variant of the
smoothing proposed in (Xue et al., 2024) can improve soft
stability while incurring only a minor accuracy trade-off.
We emphasize that the soft stability certification algorithm
in Theorem 3.1 does not require smoothing. Rather, we ob-
serve that mildly smoothing the model empirically improves
stability rates. To formalize this, we now introduce the mul-
tiplicative smoothing operator originally used to certify hard
stability in Xue et al. (2024).

Definition 4.1 (Multiplicative Smoothing). For any clas-
sifier f and smoothing parameter λ ∈ [0, 1], define the
multiplicative smoothing operator Mλ as:

Mλf(x) = E
z∼Bern(λ)n

f(x⊙ z),

where z1, . . . , zn ∼ Bern(λ) are i.i.d. samples.
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This method is termed multiplicative smoothing because the
noise multiplies the input, unlike standard additive noise
smoothing (Cohen et al., 2019). The parameter λ controls
the probability of keeping each feature, wherein each feature
is i.i.d. dropped (zeroed out) with probability 1− λ. Note
that at λ = 1, we recover the original classifier M1f(x) =
f(x), while at λ = 0, the classifier is forced to predict on a
fully masked input: M0f(x) = f(0n).

4.1. Summary of Main Theoretical Findings

To effectively apply smoothing, we must avoid the draw-
backs observed in hard-stability certification. Our first ob-
servation is the following:

(Finding 1) Heavy smoothing (λ ≤ 1/2) is required
to obtain non-trivial hard stability guarantees.

Xue et al. (2024) only give hard stability guarantees when
λ ≤ 1/2. Critically, such a small λ means that at least
half of the features are dropped from x on average, and so
f must operate on a heavily masked image. Under such
intense masking, it is expected that the smoothed classifier
suffers a drop in accuracy, which was observed in Xue
et al. (2024) and we also show in Section 5. However, such
values of λ are far smaller than what is needed to improve
the stability rate, as we later show in our experiments.

To understand the effect of multiplicative smoothing on
soft stability, we draw on techniques from Boolean func-
tion analysis (O’Donnell, 2014), which studies functions of
Boolean-valued inputs. This is related to attribution-masked
evaluation as follows: for a classifier f and input x, let
fx(α) = f(x ⊙ α) be the α-masked evaluation, such that
fx : {0, 1}n → Rm is then a Boolean function. Section 4.2
gives an overview of Boolean function analysis and uses
standard techniques to characterize the effect of smoothing
on the classifier’s spectrum, wherein our main result is that:

(Finding 2) Mild smoothing (λ ≈ 1) already suffices
to rapidly decay the classifier’s spectrum, making it
less sensitive to perturbations in the selected features.

Although this gives a novel and insightful perspective on
how smoothing affects the classifier’s spectrum, it does not
yield direct results on how smoothing affects the stability
rate. To analyze this, we introduce novel analytic techniques
in Section 4.3 to derive an explicit bound in terms of the
smoothing parameter λ.

(Finding 3) Smoothing improves the stability rate
lower bound by a factor of λ: if 1 − Q ≤ τr(fx),
then 1− λQ ≤ τr(Mλfx), where Q is a quantity that
depends on the spectrum of fx and r.

In other words, the lower bound on the smoothed classi-
fier’s stability rate shrinks by a factor of λ compared to

the original classifier’s. We emphasize that the derivation
of this bound required the investigation of novel Boolean
function analytic tooling, which would be of interest for
mathematically studying feature attributions. We give some
background on Boolean function analysis and an overview
of our results in the following, and we refer to Appendix A
and Appendix B for more extensive details.

4.2. General Results via Boolean Function Analysis

Boolean functions are often analyzed as linear combinations
of basis functions, with a standard choice being the p-biased
Fourier basis, defined as follows.

Definition 4.2 (p-Biased Basis). For any subset S ⊆ [n],
define its corresponding p-biased Fourier basis function as:

χp
S(α) =

∏
i∈S

p− αi√
p− p2

.

When p = 1/2, this is the standard basis. For example, the
function h(α1, α2) = α1 ∧ α2 may be expressed as:

h(α1, α2) =
1

4
+

1

4
χ{1}(α) +

1

4
χ{2}(α) +

1

4
χ{1,2}(α),

where we omit p for brevity, and we let the empty prod-
uct equal 1 by convention so that χ∅(α) = 1 for any α.
Importantly, these χp

S form an orthonormal basis: for any
S, T ⊆ [n], we have Eα∼Bern(p)n [χ

p
S(α)χ

p
T (α)] = 1 when

S = T , and zero otherwise. This lets us uniquely express
fx : {0, 1}n → Rm as a linear combination of χp

S via

fx(α) =
∑
S⊆[n]

f̂x(S)χ
p
S(α), f̂x(S) = E

α
[fx(α)χ

p
S(α)],

where f̂x(S) ∈ Rm is the p-biased Fourier coefficient of
fx at the index set S, whose degree is its size |S|. Our first
result characterizes how Mλ acts on each χp

S .

Lemma 4.3 (Spectrum Decay). For any p-biased basis
function χp

S and smoothing parameter λ ∈ [p, 1],

Mλχ
p
S(α) =

(
λ− p

1− p

)|S/2|

χ
p/λ
S (α).

For λ ≥ p, smoothing can be understood as a change-of-
basis from χp

S to χ
p/λ
S while scaling the coefficient by a

factor that decays exponentially with |S|. In particular,

Mλfx(α) =
∑
S⊆[n]

(
λ− p

1− p

)|S|/n

f̂x(S)χ
p/λ
S (α).

This contraction means that Mλfx has lower variance than
fx and is, therefore, more robust than fx with respect to the
appropriate input distribution. To make this concrete:

5
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Lemma 4.4 (Variance Reduction). For any function h :
{0, 1}n → R and smoothing parameter λ ∈ [p, 1],

Var
α∼Bern(p/λ)n

[Mλh(α)] ≤
(
λ− p

1− p

)
Var

α∼Bern(p)n
[h(α)].

If the function is centered at h(α) = 0, then we also have:

E
α∼Bern(p/λ)n

[
Mλh(α)

2
]
≤ E

α∼Bern(p)

[
h(α)2

]
.

The above result is established for scalar-valued functions,
which is relevant when analyzing individual coordinates of
fx or considering fx as a binary classifier. The above re-
sult provides a novel characterization of how multiplicative
smoothing modifies the classifier’s spectrum in terms of a
variance reduction. However, there remains a gap between
spectral decay and its impact on soft stability: while smooth-
ing reduces variance, it is not immediately clear how this
impacts the stability rate τr(fx). To address this, we move
beyond the standard Fourier basis and introduce novel ana-
lytic tooling next in Section 4.3, which allows us to derive
explicit lower-bounds on the stability rate.

4.3. Lower Bounding the Stability Rate

Analyzing the stability of attributions leads to the study
of Boolean functions under one-way perturbations. While
the standard Fourier basis is a powerful theoretical tool, it
has two key limitations in our setting. First, it treats the
0 → 1 and 1 → 0 transitions symmetrically, whereas stabil-
ity concerns only additive perturbations of α′ ≥ α. Second,
standard spectral analysis focuses on global function prop-
erties rather than local behavior about a particular α. This
asymmetry of tooling and setting, combined with our focus
on mild smoothing, motivates the development of new ana-
lytical tools beyond standard Fourier analysis. In particular,
we introduce a monotone function basis as follows.

Definition 4.5 (Monotone Basis). For any subset S ⊆ [n],
define its corresponding monotone basis function as:

1S(α) =

{
1, αi = 1 for all i ∈ S,

0, otherwise.

The monotone basis provides a direct encoding of set in-
clusion. For example, the function h(α1, α2) = α1 ∧ α2 is
concisely represented as h(α) = 1{1,2}(α). More generally,
any fx also admits a unique expansion:

fx(α) =
∑
S⊆[n]

f̃x(S)1S(α),

where let f̃x(S) denote the monotone coefficient of S. Cru-
cially, the monotone basis exhibits the properties that let
us establish direct lower bounds on the stability rate of the
smoothed classifier.

Lemma 4.6 (Smoothing Helps Stability). The stability rate
of a binary classifier h : {0, 1}n → [0, 1] is bounded by

1− τr(h) ≤ Q
(
{h̃(S) : |S| ≤ r}

)
,

where Q depends on the monotone weights of degree ≤ r.
For any λ ∈ [0, 1], the stability rate of Mλh is bounded by

1− τr(Mλh) ≤ λQ
(
{h̃(S) : |S| ≤ r}

)
.

This result quantifies the improvement in soft stability due
to smoothing, wherein the worst-case bound shrinks by a
factor of λ. We present extensive details in Appendix B.

5. Experiments
We evaluate the attainable soft stability rates on differ-
ent classification models, and explore how multiplicative
smoothing can improve them.

Setup For vision models, we use Vision Transformer
(ViT) (Dosovitskiy, 2020) and ResNet (He et al., 2016).
For language models, we use RoBERTa (Liu, 2019). For
the vision dataset, we use a 1000-sized subset 2 of Ima-
geNet (Deng et al., 2009) that contains one sample per each
of its 1000 classes. For the language dataset, we use the emo-
tion subset of TweetEval (Mohammad et al., 2018), which
consists of four classes: anger, joy, optimism, and sadness.
For feature attribution methods, we used LIME (Ribeiro
et al., 2016), SHAP (Lundberg and Lee, 2017), Integrated
Gradients (Sundararajan et al., 2017), and MFABA (Zhu
et al., 2024). We convert real-valued attribution to binary-
valued ones by selecting the top-k features.

Result 1: Soft Stability Certifies More Than Hard Stabil-
ity We first investigate the quality of stability guarantees
that different feature attribution methods can give us with
respect to off-the-shelf, non-fine-tuned classifiers. We plot
in Figure 4 the average soft and hard stability rates ob-
tained by taking the top-25% of features ranked by LIME,
SHAP, Integrated Gradients, MFABA, and random explana-
tion methods. We use ε = δ = 0.1 in our experiments, such
that N = 150 according to our sampling method in Theo-
rem 3.1. The plotted soft stability rates are estimates of the
true soft stability rates within ε distance with probability 1 -
δ, that is, we can guarantee that the estimated soft stability
rates are within the 0.1 interval of the true soft stability rates
with 90% probability.

We observe that the attainable radii are much larger by soft
stability than hard stability, for both Vision Transformer and
RoBERTa. In particular, for Vision Transformer, soft stabil-
ity attains radii up to two orders of magnitude larger than

2
github.com/EliSchwartz/imagenet-sample-images
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Figure 4. Soft Stability Certifies More Than Hard Stability. Given a classifier (VIT or Roberta) and an explanation method (e.g., SHAP
25%), we show soft stability rates vs. hard stability rates that are attainable. The soft stability rates that are shown are estimates of the true
soft stability rates within ε distance with probability 1− δ, where ε = δ = 0.1. (Far Left) The soft stability rates for Vision Transformer
on different explanation methods as a function of the radius. (Center Left) The hard stability rates for Vision Transformer on different
explanation methods as a function of the radius. (Center Right) The soft stability rates for RoBERTa on different explanation methods as a
function of the radius. (Far Right) The hard stability rates for RoBERTa on different explanation methods as a function of the radius.
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Figure 5. Accuracy decreases as smoothing intensifies. We report
accuracy values at key thresholds: (λ = 1.0) the original, unmodi-
fied classifier; (λ = 0.5) the threshold above which hard stability
certificates are not attainable; and (λ = 0.25) at which hard stabil-
ity can only certify additive perturbations of up to 2 features.

hard stability does. We can see that soft stability effectively
differentiates attribution methods, with LIME and SHAP
showing a sizable advantage over IntGrad, MFABA, and
random baselines across all radii. In contrast, hard stability
certifies overly low radii for all methods, making it inef-
fective for distinguishing stability differences. Note that a
caveat of the soft stability bounds is that they are inherently
probabilistic, which directly contrasts with the deterministic
style of hard stability. To remedy this, one can always take
more samples to get closer to the true soft stability rate.

Result 2: Mildly Smoothing Preserves Accuracy We
observe that mild amounts of smoothing suffices to maintain
accuracy. We first study the effect of smoothing on the clas-
sifier accuracy, wherein we observe that mildly smoothing
suffices to maintain accuracy. We plot our results in Figure 5,
where we note three key values: the original, unmodified
classifier accuracy (λ = 1.0), the largest smoothing parame-
ter usable in the certification of hard stability (λ = 0.5), and
the smoothing parameter close to what is used in parameter
used in many hard stability experiments, We use N = 64
samples from the Bernoulli distribution when evaluating the
smoothed classifier Mλf .

Result 3: Smoothing Improves Stability We study the
effect of the smoothing parameter on the stability rate. We
observe that smoothing improves stability but that this gain
is not necessarily uniform. We show our results in Figure 6.
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Figure 6. Mild smoothing improves the stability rate, particularly
for weaker models. However, the improvement is not necessarily
monotonic. The values reported are for when α is a random
selection of 25% of the input features.
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Figure 7. Larger initial feature selections lead to higher stability
rates, which improve with greater smoothing (smaller λ). (Left)
Stability rates at perturbation radius r = 20 for different initial
selection sizes of α. (Right) Stability rates at perturbation r = 40.

For the vision dataset, we use a random sample of N = 50
images from our ImageNet subset, and for each image, we
randomly select 25% of the input features to be α. For the
language dataset, we use only those in the emotions dataset
with input token sequences of length ≥ 40, of which there
were 50 items, where we similarly choose to include 25%
of them in α. We do this because the average token length is
only 28, so having too great of a perturbation radius might
accidentally reveal too many features.

Result 4: Stability Improves with Larger Selections We
analyze how the size of the initial feature selection α af-
fects the stability rate across different levels of smoothing.
As shown in Figure 7, larger initial feature sizes have di-
minishing returns on stability for an unsmoothed classifier.
However, applying smoothing mitigates this drop. We use a
random sample of N = 50 images.
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6. Related Work
Feature-based Explanations Feature attributions have
long been used in explainability and remain popular. Early
examples include gradient saliency (Simonyan et al., 2013),
LIME (Ribeiro et al., 2016), SHAP (Lundberg and Lee,
2017), and Integrated Gradients (Sundararajan et al., 2017).
More recent works include DIME (Lyu et al., 2022),
LAFA (Zhang et al., 2022), CAFE (Dejl et al., 2023), Do-
RaR (Qin et al., 2024), MFABA (Zhu et al., 2024), vari-
ous Shapley value-based methods (Sundararajan and Najmi,
2020), and methods based on influence functions (Basu
et al., 2020; Koh and Liang, 2017). Moreover, while feature
attributions are commonly associated with vision models,
they are also used in language modeling (Lyu et al., 2024).
For general surveys on explainability, we refer to Milani
et al. (2024); Schwalbe and Finzel (2024). For explainabil-
ity in medicine, we refer to Klauschen et al. (2024); Patrı́cio
et al. (2023). For explainability in law, we refer to (Ama-
rasinghe et al., 2023; Richmond et al., 2024). Furthermore,
“stability” is a widely used and overloaded term in the ex-
plainability literature, but many definitions relate to some
notion of robustness (Nauta et al., 2023).

Evaluating Feature Attributions Although feature attri-
butions are popular, their correctness and usefulness have
often been called into question (Adebayo et al., 2018; Dinu
et al., 2020; Kindermans et al., 2019). This is because each
attribution method computes importance by a different mea-
sure, which may not necessarily be indicative of the underly-
ing model behavior (Adebayo et al., 2022; Zhou et al., 2022),
as well as theoretical results on their limitations (Bilodeau
et al., 2024). This has prompted a large number of evalua-
tion metrics for feature attributions (Agarwal et al., 2022;
Jin et al., 2024; Nauta et al., 2023; Rong et al., 2022), in
particular for various notions of robustness (Gan et al., 2022;
Kamath et al., 2024).

Certifying Feature Attributions While many empirical
metrics exist, there is also growing interest in ensuring that
feature attributions are well-behaved through formal, math-
ematical guarantees. In particular, there is interest in certi-
fying the robustness properties of adding (Xue et al., 2024)
and removing (Lin et al., 2024) features from an attribution.
There is also work on selecting feature sets that are provably
optimal in some sense (Blanc et al., 2021). However, the lit-
erature on explicit guarantees for feature attributions is still
emerging, largely because formalizing desirable properties
and algorithmically certifying them is difficult.

7. Discussion
Probabilistic Guarantees We investigate probabilistic
guarantees, which are different than the kinds of guarantees

usually studied in robust certification. Namely, probabilistic
guarantees only require that a certain property holds with
high probability, whereas certified robustness guarantees
desire that all things hold.

Boolean Function Analysis for Explainability Our anal-
ysis leverages Boolean function techniques to better under-
stand stability. The monotone basis perspective reveals that
instability is largely driven by high-order feature interac-
tions, which grow combinatorially with perturbation radius.
Our analysis shows that smoothing can exponentially sup-
press high-order interactions while preserving key low-order
terms, leading to improved stability. This explains why
small amounts of smoothing can yield disproportionately
large gains in stability.

Towards More Stable Explanations Our work suggests
an alternative in robustness research: rather than focusing
solely on model Lipschitzness, we should analyze the dis-
tribution of monotone basis coefficients. This perspective
enables new approaches, such as regularizing high-order
terms or constructing explanations from simpler compo-
nents, to enhance stability without compromising accuracy.

Balancing Stability and Fidelity Our analysis shows that
mild smoothing (λ ≈ 1) improves stability by exponentially
suppressing high-order interactions while preserving essen-
tial low-order structure. However, stronger smoothing could
also distort attributions, potentially reducing their fidelity
to the model’s true decision process. The choice of λ is
therefore crucial: while it guarantees at least a factor of λ
improvement in stability, its effect on fidelity depends on
the distribution of |h̃(T )| across different set sizes. Our ex-
periments confirm that multiplicative smoothing enhances
stability without significantly degrading accuracy, suggest-
ing that careful tuning of λ allows for a balance between
stability and faithful attribution.

8. Conclusion
We introduce soft stability, a probabilistic relaxation of hard
stability that provides a more flexible and efficient way to
certify the robustness of feature attributions. Unlike hard
stability, soft stability is model-agnostic, sample-efficient,
and does not require destructively modifying the classifier.
Interestingly, we show that mild smoothing can improve the
soft stability certificate of classifiers while incurring only a
small cost to accuracy. We study this phenomenon from the
perspective of Boolean function analysis and present novel
characterizations and techniques that would be of interest
to explainability researchers. Furthermore, we validate our
theory through experiments on vision and language tasks.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning by making machine learning models
more interpretable and trustworthy to human practitioners.
There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.
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A. Analysis of Smoothing
We give an analysis of the smoothing operator as described in Section 4. Recall that this is defined as follows.

Definition A.1 (Multiplicative Smoothing). For any function f : Rn → Rm and smoothing parameter λ ∈ [0, 1], define the
multiplicative smoothing operator Mλ as:

Mλf(x) = E
z∼Bern(λ)n

f(x⊙ z), where z1, . . . , zn ∼ Bern(λ) are i.i.d. samples.

Definition A.2 (p-Biased Basis). For any S ⊆ [n], define its corresponding p-biased Fourier basis function as:

χp
S(α) =

∏
i∈S

p− αi√
p− p2

.

Proposition A.3 (Orthonormality of p-Biased Basis). The p-biased basis functions χp
S are orthonormal with respect to the

distribution Bern(p)n. Specifically, for any S, T ⊆ [n],

E
α∼Bern(p)n

[χp
S(α)χ

p
T (α)] =

{
1, if S = T ,

0, if S ̸= T .

Proof. For any coordinate i ∈ [n], note the following identities:

E
α∼Bern(p)

[
p− αi√
p− p2

]
= 0, E

α∼Bern(p)

( p− αi√
p− p2

)2
 = 1.

The inner product is then:

E
α∼Bern(p)n

[χp
S(α)χ

p
T (α)] = E

α

∏
i∈S

p− αi√
p− p2

∏
j∈T

p− αj√
p− p2


=

∏
i∈S∩T

E
α

( p− αi√
p− p2

)2


︸ ︷︷ ︸
= 1, for any S and T

∏
j∈S△T

E
α

[
p− αj√
p− p2

]
︸ ︷︷ ︸

= 0, if S△T ̸= ∅

where we have used the coordinate-wise independence of α1, . . . , αn to swap the expectation and products.

Lemma A.4 (Change-of-Basis via Smoothing). For any p-biased basis function χp
S and smoothing parameter λ ∈ [p, 1],

Mλχ
p
S(α) =

(
λ− p

1− p

)|S|/2

χ
p/λ
S (α).

Proof. Expanding the definition of Mλ, we first derive:

Mλχ
p
S(α) = E

z∼Bern(λ)n

[∏
i∈S

p− αizi√
p− p2

]

=
∏
i∈S

E
z

[
p− αizi√
p− p2

]

=
∏
i∈S

p− λαi√
p− p2

,
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Probabilistic Stability Guarantees for Feature Attributions

where we swapped the expectation and products using the coordinate-wise independence of z1, . . . , zn. We then rewrite the
above in terms of a (p/λ)-biased basis function as follows:

Mλχ
p
S(α) =

∏
i∈S

λ
(p/λ)− αi√

p− p2

=
∏
i∈S

λ

√
(p/λ)− (p/λ)2√

p− p2
(p/λ)− αi√
(p/λ)− (p/λ)2

(λ ≥ p)

=
∏
i∈S

√
λ− p

1− p

(p/λ)− αi√
(p/λ)− (p/λ)2

=

(
λ− p√
p− p2

)|S|/2∏
i∈S

(p/λ)− αi√
(p/λ)− (p/λ)2︸ ︷︷ ︸
χ
p/λ
S (α)

Theorem A.5 (Smoothing Reduces Variance). For any function h : {0, 1}n → R and smoothing parameter λ ∈ [p, 1],

Var
α∼Bern(p/λ)n

[Mλh(α)] ≤
(
λ− p

1− p

)
Var

α∼Bern(p)n
[h(α)].

Proof. We use the previous results to compute:

Var
α∼Bern(p/λ)n

[Mλh(α)] = Var
α∼Bern(p/λ)n

Mλ

∑
S⊆[n]

ĥ(S)χp
S(α)

 (Unique p-biased representation of h)

= Var
α∼Bern(p/λ)n

 ∑
S⊆[n]

(
λ− p

1− p

)|S|/2

ĥ(S)χ
p/λ
S (α)

 (Linearity and Lemma A.4)

=
∑
S ̸=∅

(
λ− p

1− p

)|S|

ĥ(S)2 (Parseval’s theorem by orthonormality of χp/λ
S )

≤
(
λ− p

1− p

)∑
S ̸=∅

ĥ(S)2 (0 ≤ λ−p
1−p ≤ 1 because p ≤ λ ≤ 1)

=

(
λ− p

1− p

)
Var

α∼Bern(p)n
[h(α)] (Parseval’s by orthonormality of χp

S)

B. Analysis of Stability and Smoothing in the Monotone Basis
The analysis of feature attribution stability naturally leads to studying Boolean functions under one-way perturbations.
While Fourier analysis is the standard tool for Boolean function analysis, it has key limitations for our setting. First, it
treats 0→1 and 1→0 transitions symmetrically, making it harder to analyze perturbations that only add features (β ≥ α)
and smoothing operations that only remove features (via masking). Second, traditional spectral analysis focuses on global
properties, while our stability guarantees are inherently local (they depend on the specific attribution α). This asymmetry in
our setting, combined with our focus on mild smoothing (λ ≈ 1), motivates the development of new analytical tools beyond
standard Fourier analysis.
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B.1. Monotone Basis for Boolean Functions

To respect this one-way nature of perturbations, we introduce a monotone basis. For any set T ⊆ [n]:

1T (α) =

{
1 if αi = 1 for all i ∈ T (all features in T present)
0 otherwise (any feature in T absent)

Unlike the standard Fourier basis, the monotone basis is not orthonormal. However, it satisfies certain desirable properties:

Lemma B.1. Any Boolean function h : {0, 1}n → R can be uniquely expressed in the monotone basis:

h(α) = h̃(∅) +
∑

T⊆[n],T ̸=∅

h̃(T )1T (α)

where h̃(T ) are the monotone basis coefficients of h, h̃(∅) is a constant term, and 1∅(α) = 1 for all α. The basis functions
satisfy:

E
α∼{0,1}n

[1S(α)1T (α)] = 2−|S∪T |

and the coefficients can be computed recursively:

h̃(T ) = h(T )−
∑
S⊊T

h̃(S)

where h(T ) means evaluating h on the attribution with 1’s exactly at positions in T .

Proof of Lemma B.1. First, we prove existence and uniqueness. For any attribution α, let Sα = {i : αi = 1} be its support.
By definition of 1T :

h(α) = h̃(∅) +
∑

T⊆[n]
T ̸=∅

h̃(T )1T (α)

= h̃(∅) +
∑

T⊆Sα

h̃(T ) (support restriction)

This gives a system of 2n linear equations (one for each α) in 2n unknowns (the coefficients h̃(T )). When we order both
attributions and sets by inclusion, for each set T , all proper subsets S ⊊ T appear before T in the ordering. This creates an
upper triangular matrix with 1’s on the diagonal (since 1T (T ) = 1 and 1T (S) = 0 for |S| < |T |), proving existence and
uniqueness.

For the inner product formula:

E
α

[
1S(α)1T (α)

]
= Pr

α

[
αi = 1 for all i ∈ S ∪ T

]
(product rule)

= 2−|S∪T | (uniform distribution)

For the recursive formula, fix a set T and consider h(T ). By the expansion:

h(T ) = h̃(∅) +
∑
S⊆T

h̃(S) (basis expansion)

= h̃(T ) + h̃(∅) +
∑
S⊊T

h̃(S) (split largest term)

Rearranging gives the recursive formula:
h̃(T ) = h(T )−

∑
S⊊T

h̃(S) (recursion)
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Probabilistic Stability Guarantees for Feature Attributions

To build intuition for this basis, consider the following example:
Example B.2 (Conjunction vs Fourier). Consider the conjunction of two features: h(α) = α1 ∧ α2. This function outputs 1
only when both features are present.

In the standard Fourier basis with χT (α) = (−1)| supp(α)∩T |:

h(α) =
1

4
+

1

4
χ{1}(α) +

1

4
χ{2}(α) +

1

4
χ{1,2}(α)

showing complex interactions between features.

In contrast, in the monotone basis:
h(α) = 1{1,2}(α)

This single coefficient directly captures the AND operation: the function is 1 exactly when both features are present.

B.2. Connection between Stability and Monotone Basis Expansion

We will focus on f : Rn → R (binary classification) and consider the following notion of model prediction equivalence.

Definition B.3 (Model Prediction Equivalence). For a classifier f : X → Y and input x, we say two predictions are
equivalent, denoted f(x⊙ β) ∼= f(x⊙ α), if:

|f(x⊙ β)− f(x⊙ α)| ≤ 1/2

For binary classifiers where Y = {0, 1}, this means the predictions must be identical. For probabilistic classifiers where
Y = [0, 1], this allows for small variations in confidence while preserving the predicted class.

The monotone basis allows us to derive tight bounds on both soft and hard stability. We begin with soft stability:

Lemma B.4 (Soft Stability). For any Boolean function h : {0, 1}n → [0, 1] and attribution α, the stability rate τr satisfies:

1− τr ≤ 2∑r
i=0

(
n−|α|

i

) r∑
j=1

S:|S|=j
S∩supp(α)=∅

∣∣∣∣∣∣
∑

T⊆S\{∅}

h̃(T )

∣∣∣∣∣∣
where h̃(T ) are the coefficients in the monotone basis.

Proof of Lemma B.4. We begin with the definition of stability rate. By Markov’s inequality:

1− τr = Pr
β∼∆r(α)

[
|h(β)− h(α)| > 1/2

]
≤ 2 E

β∼∆r(α)

[
|h(β)− h(α)|

]
(Markov)

To analyze the difference h(β)− h(α), we express it using the monotone basis:

h(β)− h(α) =
∑

T⊆[n]

h̃(T )
(
1T (β)− 1T (α)

)
Since perturbations only add features (β ≥ α), the difference in indicator functions simplifies considerably. For any set T :

1T (β)− 1T (α) =

{
1 if T ̸= ∅ and αi = 0, βi = 1 for all i ∈ T

0 otherwise

This allows us to rewrite the difference as a sum over only the relevant sets:

h(β)− h(α) =
∑

T :αi=0,βi=1 for all i∈T\{∅}

h̃(T )
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To compute the expectation of |h(β)− h(α)|, we first need to understand the structure of this difference for any fixed β.
Note that β is completely determined by the set of positions S where it differs from α (where zeros become ones). By
construction of ∆r(α), this set S must satisfy two properties: |S| = j for some j ≤ r, and S ∩ supp(α) = ∅ since we can
only flip zeros to ones.

For such a fixed set S, we can simplify our expression for h(β)− h(α):

h(β)− h(α) =
∑

T⊆S\{∅}

h̃(T )

This simplification follows because a set T contributes to the difference if and only if it is contained in S (the positions
where β differs from α).

Now we can compute the expectation by considering how β is sampled under ∆r(α). The sampling process has two steps:

first choose the number of positions j to flip with probability (n−|α|
j )∑r

i=0 (
n−|α|

i )
, then uniformly select j positions from the zeros

in α. This gives us:

E
β

[
|h(β)− h(α)|

]
=

r∑
j=1

∑
S:|S|=j

S∩supp(α)=∅

(
n−|α|

j

)∑r
i=0

(
n−|α|

i

)
∣∣∣∣∣∣
∑

T⊆S\{∅}

h̃(T )

∣∣∣∣∣∣
Combining this with our initial Markov inequality bound completes the proof:

1− τr ≤ 2∑r
i=0

(
n−|α|

i

) r∑
j=1

S:|S|=j
S∩supp(α)=∅

∣∣∣∣∣∣
∑

T⊆S\{∅}

h̃(T )

∣∣∣∣∣∣

Here we present a simplification of the soft-stability bound above to make it easier to parse.

Lemma B.5 (Simplified Soft Stability Bound). Under the same conditions, we also have:

1− τr ≤ 2

r∑
k=1

∑
T :|T |=k

T∩supp(α)=∅

|h̃(T )| ·
∑r

j=k

(
n−|α|−k

j−k

)∑r
j=0

(
n−|α|

i

)
Proof. Starting from the bound in Lemma B.4:

1− τr ≤ 2∑r
i=0

(
n−|α|

i

) r∑
j=1

∑
S:|S|=j

S∩supp(α)=∅

∣∣∣∣ ∑
T⊆S\{∅}

h̃(T )

∣∣∣∣
≤ 2∑r

i=0

(
n−|α|

i

) r∑
j=1

∑
S:|S|=j

S∩supp(α)=∅

∑
T⊆S\{∅}

|h̃(T )| (triangle inequality)

=
2∑r

i=0

(
n−|α|

i

) r∑
k=1

∑
T :|T |=k

T∩supp(α)=∅

|h̃(T )|
r∑

j=k

(
n− |α| − k

j − k

)
(reorder sums)

= 2

r∑
k=1

∑
T :|T |=k

T∩supp(α)=∅

|h̃(T )| ·
∑r

j=k

(
n−|α|−k

j−k

)∑r
j=0

(
n−|α|

i

) (rearrange)
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The derivation proceeds in three steps. We begin by applying the triangle inequality to separate the coefficients. Next, we
reorder the summation to group terms by coefficient size. Finally, we count the occurrences of each coefficient in the sum.

The final expression weights each coefficient h̃(T ) by
∑r

j=k (
n−|α|−k

j−k )∑r
j=0 (

n−|α|
i )

, which is the probability that a random perturbation

contains set T of size k.

Observe that the bound depends only on the monotone expansion terms of degree ≤ r.

We can use the same technique above to derive a hard stability bound in terms of the monomial expansion as well.
Lemma B.6 (Hard Stability Bound). For any Boolean function h : {0, 1}n → [0, 1] and attribution α, let

r∗ = max

r ≥ 0 : max
S⊆[n]

1≤|S|≤r
S∩supp(α)=∅

∣∣∣∣∣∣
∑

T⊆S\{∅}

h̃(T )

∣∣∣∣∣∣ ≤ 1

2


Then h is hard-stable at radius r∗.

Proof. For any β ∈ ∆r(α):

|h(β)− h(α)| =

∣∣∣∣∣∣
∑

T⊆diff(β,α)\{∅}

h̃(T )

∣∣∣∣∣∣
since diff(β, α) is always a non-empty subset of size at most r disjoint from supp(α). By definition of r∗, |h(β)− h(α)| ≤
1/2 for all β ∈ ∆r∗(α), proving hard stability.

B.3. Stability Bound for Smoothed Distribution

The monotone basis allows us to capture the smoothing operator as a simple transformation of the monomial expansion.
Theorem B.7 (Smoothing in Monotone Basis). Let Mλ be the smoothing operator that randomly masks features with
probability 1− λ:

Mλh(α) = E
z∼Bern(λ)n

[
h(α⊙ z)

]
where z represents a random mask and ⊙ denotes element-wise multiplication as defined in Section ??.

For any Boolean function h : {0, 1}n → [0, 1], the smoothed function Mλh in the monotone basis satisfies:

M̃λh(T ) =

{
h̃(∅) if T = ∅ (constant term preserved)
λ|T |h̃(T ) if T ̸= ∅ (coefficients damped)

where M̃λh(T ) and h̃(T ) are the monotone basis coefficients of Mλh and h respectively.

Proof of Theorem B.7. First, note that Mλ is a linear operator since expectation is linear. For the empty set, M̃λh(∅) = h̃(∅)
since smoothing preserves constants.

For any non-empty set T :

Mλ1T (α) = E
z∼Bern(λ)n

[
1T (α⊙ z)

]
= E

z∼Bern(λ)n

[∏
i∈T

(αizi)

]
=
∏
i∈T

(
αi E

zi∼Bern(λ)
[zi]
)

= λ|T |1T (α)

The result follows by linearity of expectation.

17



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Probabilistic Stability Guarantees for Feature Attributions

With the above theorem in hand, we can now compute the stability of the smoothed classifier:

Corollary B.8 (Stability of Smoothed Functions). For any Boolean function h : {0, 1}n → [0, 1], attribution α, and
smoothing parameter λ ∈ [0, 1], the stability rate of the smoothed function satisfies:

1− τr(Mλh) ≤ 2

r∑
k=1

λk
∑

T :|T |=k
T∩supp(α)=∅

|h̃(T )| ·
∑r

j=k

(
n−|α|−k

j−k

)∑r
j=0

(
n−|α|

i

)
This bound reveals that smoothing improves stability by exponentially dampening the influence of larger feature sets.

Proof of Corollary B.8. Apply the stability bound from Lemma B.4 to Mλh and use Theorem B.7 which shows that
M̃λh(T ) = λ|T |h̃(T ) for non-empty T :

1− τr(Mλh) ≤ 2

r∑
k=1

∑
T :|T |=k

T∩supp(α)=∅

|M̃λh(T )| ·
∑r

j=k

(
n−|α|−k

j−k

)∑r
j=0

(
n−|α|

i

) (by Lemma B.4)

= 2

r∑
k=1

∑
T :|T |=k

T∩supp(α)=∅

λk|h̃(T )| ·
∑r

j=k

(
n−|α|−k

j−k

)∑r
j=0

(
n−|α|

i

) (by Theorem B.7)

= 2

r∑
k=1

λk
∑

T :|T |=k
T∩supp(α)=∅

|h̃(T )| ·
∑r

j=k

(
n−|α|−k

j−k

)∑r
j=0

(
n−|α|

i

) (rearrange terms)

The final expression shows how smoothing affects stability through three key mechanisms. First, each coefficient h̃(T ) is
weighted by λk where k = |T |. Second, larger sets T are dampened more strongly since λk decreases exponentially with k.

Finally, the combinatorial terms
∑r

j=k (
n−|α|−k

j−k )∑r
j=0 (

n−|α|
i )

represent the probability of including set T in a random perturbation.

Remark B.9 (Smoothing Effect). The upper bound for the smoothed function in Corollary B.8 is at least a factor of λ smaller
than the upper bound for the original function, since λk ≤ λ for all k ≥ 1. However, these are only upper bounds - the
actual improvement from smoothing could be either better or worse than suggested by comparing these bounds.

B.4. Discussion and Practical Implications

Our analysis through the monotone basis reveals some key mechanisms affecting stability. First, mild smoothing (λ ≈ 1)
can be effective because it exponentially dampens higher-order terms while preserving essential low-order structure—for
instance, with λ = 0.9, single-feature terms are dampened by 0.9 while five-feature terms are dampened by 0.95 ≈ 0.59.
While our bounds guarantee at least a factor of λ improvement in stability (since λk ≤ λ for all k ≥ 1), the actual
improvement could be either better or worse in practice. Second, stability becomes harder to maintain at larger radii because
both the number of terms and their combinatorial weights grow with r, suggesting that λ should be chosen based on the
distribution of |h̃(T )| across different set sizes. These insights are validated by our experiments in Section 5, where we
show that our multiplicative smoothing improves stability without significantly degrading accuracy (Q2).

While this work establishes the theoretical foundations, we could use these insights to design new attribution methods that
explicitly control the monotone basis expansion of their output—for instance, by regularizing higher-order coefficients
or by constructing explanations primarily from small low-order terms. This suggests a new shift approach to attribution
stability: rather than focusing solely on Lipschitz constants of the model, we should study the distribution of monotone basis
coefficients, as these more directly capture the stability properties we care about.

C. Additional Experiments and Figures
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Figure 8. The stability rates of different classifiers when 25% of the features are selected. Smoothing tends to be more effective in
improving the stability rate on weaker models.
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Figure 9. Soft vs. Hard Stability. (Left) The hard stability rates for Vision Transformer on different explanation methods compared to
the soft stability rate on a random explanation as a function of the radius. (Right) The hard stability rates for RoBERTa on different
explanation methods compared to the soft stability rate on a random explanation as a function of the radius.
We zoom in and focus on the hard stability rates for different explanation methods (e.g., SHAP 25%), and show how they compare to the
soft stability rate for a random explanation at that radius range. All explanations are 25% of the entire input, and curves are averaged over
the entire dataset. Note that the soft stability rates for the different explanation methods (LIME, SHAP, IntGrad, MFABA) are similarly
high up in comparison to the hard stability rates. While the hard stability curves stop at radius = 2, the soft stability curves continue and
fill in a much larger radius range. We did not show the full curves of the soft stability so that we can showcase the hard stability cases
more closely. The gap between hard stability and soft stability is significant, showcasing that soft stability is much more powerful and
capable, even for larger radii.
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Figure 10. Hard stability rates for varying lambda parameters, Vision Transformer.
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Figure 11. Hard stability rates for varying lambda parameters, RoBERTa.
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