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ABSTRACT

Popular explanation methods often produce unreliable feature importance scores
due to “missingness bias,” a systematic distortion that arises when models are
probed with ablated, out-of-distribution inputs. Existing solutions treat this as a
deep representational flaw that requires expensive retraining or architectural mod-
ifications. In this work, we challenge this assumption and show that missingness
bias can be effectively treated as a superficial artifact of the model’s output space.
We introduce MCal, a lightweight post-hoc method that corrects this bias by fine-
tuning a simple linear head on the outputs of a frozen base model. Surprisingly,
we find this simple correction consistently reduces missingness bias and is com-
petitive with, or even outperforms, prior heavyweight approaches across diverse
medical benchmarks spanning vision, language, and tabular domains.

1 INTRODUCTION

As black-box deep learning systems are increasingly deployed in high-stakes settings such as
medicine, finance, and law, there is increasing demand for reliable and trustworthy model expla-
nations. A common approach for explaining model predictions is to use feature attribution methods,
which assign importance scores to input features based on their influence on the output. Popular
methods, such as LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017), estimate these
scores by perturbing the input, typically by ablating selected features and measuring the change in
prediction. Because true feature removal is often infeasible (e.g., one cannot physically delete im-
age pixels or omit words from tokenized sequences), attribution methods approximate removal by
substituting the selected features with default or placeholder values, such as black pixels or special
tokens (Ancona et al., 2017; Sundararajan et al., 2017).

These substitutions often result in out-of-distribution inputs that deviate significantly from the
model’s training data, inducing a systematic distortion in predictions known as missingness
bias (Hase et al., 2021; Hooker et al., 2019; Jain et al., 2022). Such bias can severely undermine the
reliability of explanations. As illustrated in Figure 1, a classifier that accurately detects a brain tumor
from clean inputs fails to do so when irrelevant features are masked, demonstrating how seemingly
innocuous ablations can corrupt model behavior. Since perturbation-based attributions are derived
directly from these corrupted predictions, their reliability is fundamentally compromised, leading
to inconsistent feature importance scores (Duan et al., 2024; Goldwasser & Hooker, 2024; Hooker
et al., 2019). This also opens the door to adversarial manipulation: malicious actors can exploit this
vulnerability to design deceptive models that obscure their use of sensitive attributes such as race or
gender (Joe et al., 2022; Koyuncu et al., 2024; Slack et al., 2020).

A variety of mitigation strategies have been proposed to address missingness bias. Replacement-
based methods aim to reduce distributional shift by imputing masked features with more realistic
content (Agarwal & Nguyen, 2020; Chang et al., 2018; Kim et al., 2020; Sturmfels et al., 2020).
Training-based methods fine-tune or retrain the model to better handle ablations (Hase et al., 2021;
Hooker et al., 2019; Park et al., 2024; Rong et al., 2022), while architecture-based approaches embed
robustness directly into the model via structural design changes (Balasubramanian & Feizi, 2023;
Jain et al., 2022).

However, these strategies are often impractical. Replacement-based methods are usually specialized
to specific domains (e.g., text (Kim et al., 2020)) or might require training model-specific imputa-
tions (Chang et al., 2018). On the other hand, training-based solutions require intensive engineering
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Figure 1: Removing irrelevant features can cause a misdiagnosis. A fine-tuned ViT (Dosovitskiy
et al., 2020) correctly predicts “tumor” on the clean image (left) and a subset of the relevant features
(middle). However, masking irrelevant features flips the prediction to “healthy”, despite the tumor
remaining visible (right). For visualization, gray stripes denote zero-valued pixels, and images are
contrast-boosted.

and computing resources, while architecture-based modifications require a deep understanding of
model internals. Moreover, it is also increasingly common that the model itself is a black-box, such
as when interacting with API-based LLM providers.

In this work, we question whether such complex interventions are necessary. We investigate a simple
yet surprisingly powerful strategy for mitigating missingness bias: finetuning a linear head on the
outputs of a frozen base model. This approach, which we call MCal, is lightweight, model-agnostic,
and post-hoc: it is significantly cheaper in implementation effort than training-based methods, does
not require model-specific adaptations like architecture-based and replacement-based methods, and
needs only access to the model’s output logits. In the following, we summarize the development of
MCal and our contributions.

A New Perspective on Missingness Bias. We find that missingness bias, a problem often treated
as a deep representational flaw, can be effectively mitigated with a simple post-hoc correction in the
model’s output space. This finding suggests the bias is often a superficial artifact, challenging the
prevailing assumption that expensive retraining or architectural modifications are necessary.

A Lightweight Method with Theoretical Guarantees. We formalize this approach as MCal,
a lightweight calibrator that is highly efficient to optimize (Section 3). Furthermore, our simple
formulation provides theoretical guarantees of convergence to a globally optimal solution, ensuring
a level of stability and reproducibility rare for deep learning interventions.

A Strong and Practical Baseline. We demonstrate MCal’s effectiveness across diverse models
and data modalities, where it is often competitive with heavyweight approaches (Section 4). This
establishes a strong and practical baseline that can be immediately adopted by researchers and prac-
titioners to improve the reliability of their explanations.

2 UNDERSTANDING MISSINGNESS BIAS

Perturbation-based feature attribution methods like LIME (Ribeiro et al., 2016) and SHAP (Lund-
berg & Lee, 2017) evaluate models on inputs with ablated features, typically replaced by fixed
baseline values (e.g., zero-vectors or mean-pixel values). However, because these synthetic inputs
often fall outside the model’s training distribution, they can induce systematic prediction distortions,
a phenomenon known as missingness bias. This section provides a background on this bias and its
consequences for explanation reliability.

2.1 PATHOLOGY: SYMPTOMS AND MEASUREMENTS

The effects of missingness bias are not merely statistical curiosities; they manifest as tangible fail-
ures that undermine the reliability of explanation methods.
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Figure 2: Feature ablations induce class distribution shifts. Masking non-critical regions skews
predictions towards the “healthy” class, even when tumors remain visible. This effect, known as
missingness bias, causes the model to misclassify inputs that retain relevant features, and undermines
the reliability of feature attribution explanations.

Systematic Skew in Predictions. The most direct failure mode of missingness bias is a systematic
skew in model predictions (Jain et al., 2022). As illustrated in Figure 2, the model’s accuracy
degradation is not random but systematic: it develops a consistent bias towards one class (in this
case, “healthy”) even when the core evidence for the correct class remains visible. This failure
mode is particularly pernicious, persisting even when we selectively avoid masking the central image
patches most likely to contain the tumor.

Unreliable Feature Attributions. Another consequence of this degraded accuracy is that any fea-
ture attributions derived from the model are fundamentally unreliable. If a model’s predictions are
incorrect on ablated inputs, the importance scores computed from these predictions cannot be trusted
to reflect the model’s true reasoning. Empirical findings support this; for instance, Jain et al. (2022)
show that feature importance scores from models with high missingness bias fail standard robust-
ness tests such as top-k removal. Prior work has also shown that minor changes to the ablation
process can yield vastly different explanations, suggesting they reflect perturbation artifacts rather
than genuine model logic (Hooker et al., 2019).

Quantifying Missingness Bias. Many feature attribution methods operate under the assumption
that feature ablation is a neutral act of intervention intended to simulate the removal of informa-
tion (Sturmfels et al., 2020; Sundararajan et al., 2017). When a model’s behavior deviates from
this expected neutrality, the resulting shift in its aggregate predictive distribution serves as a direct
measure of missingness bias. This shift is typically quantified as the distribution shift between the
class frequencies on the clean data distribution D versus the ablated data distribution D′ (Balasub-
ramanian & Feizi, 2023; Jain et al., 2022):

MissingnessBias(f) = DKL

(
E

x′∼D′
Class(f(x′))

∥∥ E
x∼D

Class(f(x))
)
, (1)

where D′ is the distribution of inputs where each feature is i.i.d. ablated with some given probability,
and let Class(f(x)) be the one-hot vector representation of the class predicted by f on x. The above
can then be understood as a measure of information-theoretic “surprise” when f is evaluated on un-
biased ablations, supposing only knowledge of its behavior on clean inputs. In particular, Jain et al.
(2022) specifically introduces this to measure missingness bias, rather than of adjacent phenomena,
such as prediction sensitivity with respect to top-k feature selections (Hase et al., 2021).

2.2 THE CHALLENGE OF MITIGATION

A variety of strategies have been proposed to address missingness bias, which can be broadly cate-
gorized as follows:

• Replacement-based. These methods aim to make ablated inputs appear more in-distribution.
Beyond simple values (e.g., zero and mean-valued (Hase et al., 2021)), more complex variants
include marginalization, which averages outputs over plausible replacement values (Chirkova
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Figure 3: MCal corrects class distribution shifts induced by input ablations. The ablated input
initially predicts “healthy”. MCal applies a learned transformation Rθ to adjust the output proba-
bilities, thereby restoring alignment with expected class distributions. This calibration method is
model-agnostic, requiring only the classifier’s output probabilities of each class.

et al., 2023; Frye et al., 2020; Haug et al., 2021; Kim et al., 2020; Vo et al., 2024), and generative
modeling, which uses a secondary model to in-paint realistic content (Agarwal & Nguyen, 2020;
Chang et al., 2018). However, these approaches are often computationally expensive and can
introduce their own artifacts.

• Training-based. This approach treats feature ablations as a form of data augmentation. Methods
like ROAR (Hooker et al., 2019), ROAD (Rong et al., 2022), and GOAR (Park et al., 2024)
retrain or fine-tune the model on masked inputs to align its train and test distributions. Although
effective at building robust representations, this strategy is computationally expensive and only
possible when the model can be modified.

• Architecture-based. These methods embed robustness directly into the model’s design. For ex-
ample, modified vision transformers (Dosovitskiy et al., 2020; Jain et al., 2022) and CNNs (Bal-
asubramanian & Feizi, 2023) can be altered to use dedicated mask tokens or explicitly suppress
the influence of ablated regions. However, these changes are often non-trivial, architecture-
specific, and not generalizable.

While often effective, the high cost and complexity of these methods make them impractical for
many modern use cases, especially those involving large-scale, pre-trained foundation models. Fur-
thermore, such approaches are entirely infeasible when working with API-based models that do not
permit retraining or architectural changes. This gap highlights the need for a practical, lightweight,
and model-agnostic approach to mitigating missingness bias that we introduce next.

3 MCAL: A LIGHTWEIGHT CALIBRATOR FOR MISSINGNESS BIAS

Having established the pathology of missingness bias and the practical limitations of existing heavy-
weight solutions, we now introduce our method. We propose MCal, a lightweight, post-hoc correc-
tion that is surprisingly effective at mitigating missingness bias.

3.1 ARCHITECTURE AND OPTIMIZATION

The calibration process is illustrated in Figure 3. A base classifier f : Rn → Rm first processes an
input x to output the raw logits z = f(x). A calibrator Rθ : Rm → Rm then transforms the raw
logits into the calibrated logits Rθ(z). Specifically, we implement this as an affine transform:

Rθ(z) = Wz + b, (2)

where the calibrator is parametrized by θ = (W, b), with W ∈ Rm×m and b ∈ Rm. To fit the cali-
brator, we use a standard cross-entropy objective that aligns the calibrated prediction on an ablated
input with the base model’s prediction on the clean input:

L(θ) = E
(x,x′)∼D

CrossEntropy[Rθ(f(x
′)),Class(f(x))], (3)

where (x, x′) ∼ D are samples of a clean input x and its ablated version x′, and Class(f(x)) denotes
the one-hot prediction on the clean input.

Our approach is deliberately minimalist, prioritizing efficiency without compromising performance.
We apply a standard cross-entropy objective, identical to that used in heavyweight retraining meth-
ods (Hooker et al., 2019), but only to a lightweight matrix-scaling calibrator (Guo et al., 2017). This
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Figure 4: Geometric intuition of MCal on a synthetic dataset. Missingness bias causes the uncal-
ibrated outputs to shift. For instance, the Class A cluster (blue circles) is pulled towards the Class
B vertex, leading to systematic misclassification and low accuracy. MCal applies an optimal affine
transformation to the uncalibrated outputs, correcting the shift and improving accuracy.

design is highly efficient, with orders of magnitude fewer parameters (m2 +m) than fine-tuning or
even parameter-efficient methods like LoRA (Hu et al., 2022). Our experiments in Section 4 con-
firm that this minimalist approach is, in fact, sufficient to yield competitive performance with more
engineering-intensive approaches like retraining the model or architecture modifications. Further-
more, this simple design also comes with strong theoretical guarantees on its optimization process,
which we detail next.

3.2 THEORETICAL GUARANTEES AND GEOMETRIC INTERPRETATION

Our affine parametrization of Rθ means that standard gradient-based optimization will provably
converge to an optimal solution, which we formalize as follows.
Theorem 3.1 (Guaranteed Optimal Convergence). The MCal objective L(θ) is convex in θ.

Proof. The function L(θ) is convex in θ, as it is a composition of the convex cross-entropy loss and
an affine transformation. Because local minimums are also global minimums for convex functions,
standard gradient-based optimization (e.g., SGD, Adam) will converge to an optimal solution.

The importance of this guarantee is twofold. First, it ensures reproducibility and stability: the
optimization process is guaranteed to converge to the same optimal solution, reducing the need for
extensive hyperparameter sweeps or random seed searches. Second, it provides a strong assurance
of quality, guaranteeing that the resulting calibrator is a globally optimal affine correction for the
given data.

Geometric Interpretation. MCal also has a clear geometric interpretation, visualized in Figure 4.
The uncalibrated outputs form biased point clouds on the probability simplex, with the Class A
cluster pulled towards the Class B vertex, leading to systematic misclassification. MCal learns an
optimal affine transformation in the logit space that rotates, scales, and shifts these distributions.
This untangles the clouds and pushes them towards their correct vertices. Theorem 3.1 guarantees
that this correction is globally optimal for our parametrization.

3.3 IMPLEMENTATION CONSIDERATIONS

Conditioning on Ablation Rates. Our experience shows that the severity of missingness bias is
strongly correlated with the fraction of features that are ablated. To account for this, we recommend
using an “ensemble” of specialized calibrators, each one fit for a specific ablation rate (e.g., 10%,
20%, etc.). At inference time, we apply the calibrator that was trained for the ablation rate closest to
that of the input. We study the advantage of this ensemble in Section 4.

Integration with Explainers. As a post-hoc wrapper, MCal is compatible with any perturbation-
based explanation method. The calibrated model, f̃ , can be used as a drop-in replacement for the
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Figure 5: Calibrated models have better explanations. Compared to an uncalibrated baseline
model (Uncal), LIME and SHAP explanations on MCal-calibrated models have more accurate fea-
ture importance scores (sufficiency ↓). Calibrated models are also more robust to ablations (sensi-
tivity ↓). Results are shown for the MRI dataset using an unconditioned calibrator.

original model, f , in any existing explainability pipeline. The resulting feature attributions are then
generated from a model that has been explicitly corrected for the missingness bias induced by the
explanation method’s own perturbation strategy.

4 EXPERIMENTS

We now present experiments to validate the impact of missingness bias in explainability, as well
as the ability of MCal to mitigate it. Moreover, we demonstrate that MCal repeatedly outperforms
more expensive baselines, such as full retraining and architecture modifications. Additional details
are given in Appendix A.

Models, Datasets, and Compute. We evaluate on a diverse set of medical benchmarks that span
vision (Brain MRI (Nickparvar, 2021), Chest X-ray (CheXpert) (Irvin et al., 2019), and Breast Can-
cer Histopathology (BreakHis) (Spanhol et al., 2015)), language (MedQA (Jin et al., 2021), MedM-
CQA (Pal et al., 2022)), and tabular domains (PhysioNet (Haug et al., 2021), Breast Cancer (Wolberg
et al., 1993), Cardiotocography (CTG) (Campos & Bernardes, 2000)). We respectively evaluate on
these domains with ViT-B16 (Dosovitskiy et al., 2020), Llama-3.1-8B-Instruct (AI@Meta, 2024),
and XGBoost (Chen & Guestrin, 2016), which are trained using standard methods. For compute,
we had access to a machine with four NVIDIA H100 NVL GPUs.

Input Ablations and Calibration. We say that an input x ∈ Rn has ablation rate p = k/n if k of
its features are ablated. To evaluate on a tractable range of p, we use p ∈ {0/16, 1/16, . . . , 15/16}
for vision, p ∈ {0/10, 1/10, . . . , 9/10} for language, and p ∈ {0/10, 1/10, . . . , 9/10} for tabular,
where recall that we recover the clean input at p = 0. For imputations, we use zero-valued (black)
patches for vision, we replace whitespace-separated words with the special string UNKWORDS for
language, and we perform mean imputation for tabular data. For vision specifically, we select k
patches to ablate, regardless of their original values (e.g., some MRI images already have black
patches). Following discussion from Section 3.3, the unconditioned calibrator was fit on inputs
where each feature was uniformly ablated with probability 1/2, whereas the conditioned ensemble
has a calibrator fit at each value of p. All calibrators were optimized using Adam (Kingma & Ba,
2014) with a learning rate of 10−3 for 5000 steps.

Question 1: Do calibrated models lead to better explanations? Missingness bias is known to
skew the explanation quality of feature attribution methods (Jain et al., 2022). To that end, we
consider how two representative methods, LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee,
2017), perform on calibrated vs. uncalibrated models. These methods output a ranking of each input
feature’s importance to the model, which we evaluate using the standard sufficiency and sensitivity
metrics (Hase et al., 2021), detailed in Appendix A.1. Informally, sufficiency measures whether the
features identified as important are enough on their own to maintain the model’s original prediction
confidence (lower values indicate a higher quality ranking), whereas sensitivity measures how robust
the underlying model is to the removal of features (lower values indicate a more robust model). We
report results in Figure 5 that confirm these findings: calibrated models induce more informative
importance scores and are also more robust to the inclusion or exclusion of features.
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Figure 6: Conditioning on ablation rate improves MCal. Fitting an ensemble of calibrators at a
discretized set of ablation rates can help reduce the overall missingness rate, compared to using a
single unconditioned calibrator. (Left) MRI, (Middle) MedQA, (Right) PhysioNet.

Dataset Original Replace Retrain Arch TempCal PlattCal MCal (✓)

Vision
Brain MRI 1.18 e−1 1.51 e−1 6.70 e−4 1.40 e−1 1.16 e−1 1.27 e−1 7.43 e−3
CheXpert 1.70 e−1 9.70 e−2 2.67 e−2 1.50 e−1 1.65 e−1 2.02 e−1 8.82 e−3
BreakHis 1.87 e−1 4.20 e−1 2.19 e−2 1.54 e−1 1.86 e−1 1.66 e−1 4.29 e−3

Language MedQA 1.61 e−1 1.50 e−1 1.70 e−1 2.68 e−2 1.57 e−1 9.48 e−2 9.44 e−4
MedMCQA 1.89 e−1 2.59 e−1 1.52 e−1 1.40 e−1 7.81 e−1 1.13 e−1 9.01 e−3

Tabular
PhysioNet 1.17 e−1 1.20 e−1 5.59 e−3 8.14 e−2 1.17 e−1 1.19 e−1 5.01 e−3
Breast Cancer 1.02 e−1 1.44 e−1 5.68 e−3 2.13 e−1 1.02 e−1 1.08 e−1 1.92 e−5
CTG 1.06 e−1 7.02 e−2 6.61 e−3 2.85 e−1 1.06 e−1 9.20 e−2 3.35 e−3

Table 1: MCal is an effective and lightweight way to reduce missingness bias. It repeatedly
outperforms more computationally expensive baselines, such as retraining and architecture modifi-
cation. We report the KL divergence-based metric in Equation (1).

Question 2: What is the impact of conditioning on feature ablation fractions? Rather than
fitting a single calibrator, we observe that using an ensemble of calibrators, each conditioned upon a
single fraction (ablation rate), can improve performance. We compare the performance of this con-
ditioning in Figure 6, where we observe an improvement in performance over an unconditioned
calibrator. This is expected, as a model’s missingness bias is known to vary with the ablation
rate (Hooker et al., 2019; Jain et al., 2022), and an ensemble thereby allows each calibrator to
specialize to their respective rates.

Question 3: How does MCal compare to the baselines? We compare MCal to each of the fol-
lowing prior approaches which have all been employed in previous work to combat the problem of
out of distribution inputs

• Original: This is the unmodified, uncalibrated classifier that acts as a reference baseline.
• Replacement-based (Replace): Our implementation of replacement-based mitigation is in-

spired from Hase et al. (2021). In particular, for vision, we use the channel-wise mean pixel
value of the clean dataset (Carter et al., 2021). For language, we drop tokens from the sequence
so that the ablated token sequence is shorter in length than the clean one (Hase et al., 2021). For
tabular, we perform mean imputation.

• Training-based approaches (Retrain): Models are fine-tuned on ablated inputs, where each
feature (patch, token) is uniformly ablated with probability 1/2.

• Architectural-based (Arch): We perform a non-trivial modification of ViT to accept attention
masks as in Jain et al. (2022). For models with architectural support for missing features, we
use those: e.g., attention masking in Llama-3 and native support for NaN in XGBoost.

• Standard calibration (TempCal, PlattCal): We additionally consider existing calibration-
based methods from literature, particularly temperature (TempCal) and vector-scaling Platt cal-
ibration (PlattCal), as described in Guo et al. (2017).

We report in Table 1 the average of values from the ensemble of conditioned calibrators. We found
that MCal is often superior even to more computationally and engineering-intensive baselines, such
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Figure 7: MCal does not harm classifier accuracy. On clean inputs (far left with p = 0), both
conditioned and unconditioned variants of MCal do not significantly degrade accuracy. Moreover,
calibrated accuracy is either improved or competitive at all ablation rates. Because MCal fits the
classifier’s clean predictions rather than the ground truth labels, mispredictions may occasionally
mislead MCal, leading to lower accuracies. (Left) MRI, (Middle) MedQA, (Right) PhysioNet.

as model retraining and ViT architecture modifications. In support of our earlier claims, we also
observe that MCal outperforms both temperature and Platt calibration. Replacement-based methods
have inconsistent performance, which aligns with known observations on their sensitivity to impu-
tation values. Finally, we note that architecture-native support for missing features may, in fact,
exacerbate missingness bias, as seen in XGBoost on the Breast Cancer and CTG datasets.

Question 4: How does MCal affect classifier accuracy? MCal fundamentally alters a pretrained
base classifier f into f̃ , which is then deployed to downstream applications. Importantly, the accu-
racy of f̃ must remain high, even when it is optimized on ablated images Equation (3). We show
in Figure 7 that this is indeed the case: we compare the uncalibrated base model against both ab-
lation rate-conditioned and unconditioned calibrators. We observe that both forms of calibration
improve classifier accuracy at all ablation rates, where we recall that the clean image is obtained
at an ablation rate of zero. Aligning with earlier findings, we see that the conditioned calibrator
outperforms the unconditioned calibrator.

5 RELATED WORK

Missingness Bias in Explainability. Missingness bias (Jain et al., 2022) denotes the systematic
distortions that arise when attribution methods “remove” features via ablations, e.g., with black
pixels, zero-valued embeddings, or special [MASK] tokens. Such ablated inputs are often out-of-
distribution with respect to the model’s training distribution, which can result in erratic predictions,
inflated confidences, and unstable feature importance scores (Hooker et al., 2019; Vo et al., 2024).
In particular, importance scores can vary drastically with the chosen replacement technique (Haug
et al., 2021; Sturmfels et al., 2020) and can even be exploited adversarially (Slack et al., 2020).
Consequently, feature-based explanations commonly reflect ablation artifacts rather than genuine
model reasoning (Hase et al., 2021), which risks eroding trust in high-stakes settings. In addition
to the methods described earlier in Section 2.2, there are several benchmarks related to missingness
bias (Duan et al., 2024; Hesse et al., 2023; Liu et al., 2021).

Calibration Methods. A calibration method post-hoc rescales the logits or probabilities of a
model prediction without modifying the underlying model weights. Classic techniques include bin-
ning (Zadrozny & Elkan, 2001), Platt scaling (Platt et al., 1999), and temperature scaling (Guo et al.,
2017). This is often used to improve and calibrate model predictions under input distribution shift,
such as in autonomous driving (Tomani et al., 2021), healthcare (Shashikumar et al., 2023), and
LLMs (Kumar et al., 2022). To our knowledge, however, calibration for missingness bias is novel.

Robust and Reliable Explanations. There is much interest in the development of robust expla-
nations for machine learning models. Notable efforts include the development of benchmarks for
explanations, particularly feature attribution methods (Adebayo et al., 2018; 2022; Agarwal et al.,
2022; Dinu et al., 2020; Duan et al., 2024; Jin et al., 2024; Kindermans et al., 2019; Nauta et al.,
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2023; Rong et al., 2022; Zhou et al., 2022). There is also interest in formally certifying explana-
tions (Bassan & Katz, 2023; Jin et al., 2025; Lin et al., 2023; Xue et al., 2023; You et al., 2025).
Other efforts, such as this work, involve adapting classifiers to be more robust to input ablations in
feature attributions.

6 DISCUSSION, FUTURE DIRECTIONS, AND CONCLUSION

Calibration Design. While other calibrator parametrizations are viable, any non-convex
parametrization of the objective risks losing guarantees of optimality convergence. In turn, this
risks introducing undesirable behavior, such as sensitivity to the initialization of calibrator parame-
ters. Additionally, observe that the measure of missingness bias (Equation (1)) is different than the
calibrator optimization objective. This is because the missingness bias measure is not differentiable
due to the one-hot Class function, which motivated us to search for reasonable alternatives, e.g.,
the standard cross-entropy objective in classification. While it would be interesting to explore, for
instance, differentiable relaxations of Equation (1), we leave this to future work.

Beyond Explainability. Missingness bias is a fundamental risk when evaluating feature subsets
on a model that is not explicitly designed to handle missing data. While we are primarily motivated
by challenges in explainability, this work has broader applications. In vision, model evaluation
with masked images is a standard practice. In language modeling, a token’s embedding is often
dependent on its position, meaning that ablations are position-sensitive, whether via the attention
mask, subsetting the input sequence, or replacement with special [MASK] tokens.

Limitations. MCal requires access to a collection of clean and ablated prediction logits, which
may not always be available, such as for some API-based LLMs. Even then, gradient-based opti-
mization is only guaranteed to converge to global optimality under certain parameterizations of the
calibrator. Overfitting is also a potential risk, particularly in settings with a large number of possible
classes (e.g., a language model’s vocabulary size), in which case regularization is warranted. Fur-
thermore, MCal is only intended to mitigate missingness bias, and other forms of bias in the model
and data may still be propagated.

Future Work. One direction is to investigate the theoretical guarantees and empirical performance
of different calibrator parametrizations, such as a one-layer feedforward network instead of an affine
transform. Another extension is to broaden our study on the performance of calibrated classifiers in
explainability, such as with respect to the explanation methods and metrics surveyed in Section 5. It
would be interesting to explore methods for mitigating missingness bias when prediction logits are
not available, a common restriction for API-based large language models. Additionally, the idea of
calibration may also be extended to other instances of domain shift and Out of Distribution inputs,
which are prevalent throughout Machine Learning literature

Conclusion. Missingness bias threatens the reliability of popular explanation methods and tech-
niques, a problem magnified by the increasing impracticality of existing engineering-intensive solu-
tions. To overcome this, we introduce MCal, a lightweight calibration method that requires only a
collection of clean and ablated prediction pairs. We demonstrate that a simple, affine parametriza-
tion of the calibrator offers strong theoretical guarantees while achieving empirical performance
that often outperforms more expensive baselines. In summary, MCal is an efficient, model-agnostic
calibration scheme that improves the reliability of popular feature-based explanation methods.

Ethics Statement. This work presents a method for improving the reliability of feature-based
explanation methods. Our intended audience includes researchers and practitioners interested in
explainability. While there may be potential for misuse, we do not believe that the contents of this
paper warrant concern.

Reproducibility Statement. All code and experiments for this paper are available at:

https://anonymous.4open.science/r/MCal-DE3C/
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A EXPERIMENT DETAILS AND ADDITIONAL EXPERIMENTS

We present our experimental setup here, along with any additional experiments and relevant details.

Compute. We had access to a server with four NVIDIA H100 NVL GPUs.

A.1 OTHER METRICS RELATED TO MISSINGNESS BIAS

Given an input x ∈ Rn and a classifier f : Rn → R, an explanation method returns a ranking α ∈
Rn of each feature’s importance. To evaluate the quality of α, we use the sufficiency and sensitivity
metrics (Hase et al., 2021), which measure how model confidence changes when important features
are isolated or removed.

From the scores α, we create a binary mask ek ∈ {0, 1}n selecting the top-k most important features.
The sufficiency metric evaluates if this subset of features is sufficient to yield the original prediction.

Sufficiency(f, x, ek) = f(x)ŷ − f(Replace(x, ek))ŷ (4)

Here, ŷ = argmaxy f(x)y is the predicted class. The Replace(x, ek) function creates a counterfac-
tual by preserving only the top-k features against a baseline. A lower score is better, indicating the
selected features are sufficient.

Conversely, the sensitivity metric (called comprehensiveness in Hase et al. (2021)) evaluates if im-
portant features are necessary for the prediction by measuring the confidence drop upon their re-
moval.

Sensitivity(f, x, ek) = f(x)ŷ − f(Replace(x,¬ek))ŷ (5)
The top-k features in mask ek are removed by preserving those in the complement mask ¬ek. A
higher score indicates the features were critical to the prediction. A lower score suggests the model
is more robust to their exclusion.
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