
Optimal Control of Deep Equilibrium Models

Anton Xue and Susmit Jha

Abstract

We study the application of convex optimization techniques to discrete-time open-loop control where the
plant is parametrized by an implicit model. This is motivated by the observations that implicit models can
effectively learn dynamical systems, and that their parameter size is often small. This then enables the use of
optimal control techniques of querying a solver to generate the control signal over a receding horizon. We give
a formulation of the inherently non-convex control problem, for which we present both linear and semidefinite
relaxations. Moreover, we show that if the model satisfies certain incremental quadratic constraints, then the
convex optimization problem can be augmented with sampled trajectory data.

1 Introduction

Using neural networks [1] for system identification [2, 3] is appealing for several reasons. First, one does not
need to give a first-principles derivation of the internal dynamics — rather, it suffices to use sampled data to
learn and imitate the underlying behavior — which is especially useful if the system is complex. Second, deep
learning architectures are especially flexible, allowing engineers to rapidly iterate and improve the model design
and training. And perhaps most importantly: this approach is effective. Although neural network-based system
identification has existed since the 90’s [4], the past decade of acceleration in computational power has made a
deep learning-based data-driven model design not only feasible, but also practical [5, 6, 7, 8]. In this paper we
study the natural question after system identification: given a neural network model of a dynamical system, how
does one control it?

There are three critical challenges in the application of control for learned models: expressivity, stability, and
scalability. Expressivity concerns the class of functions the learned model can represent, which is especially
important if the underlying system is complex. It is well known that neural networks are universal function
approximators [9] and therefore prime candidates for learning dynamics 1. Stability refers to the robustness of the
model against small perturbations, and is a central focus of control theory [10]. Model stability is often desirable in
practice even if the underlying system may be unstable [11, 12, 13], as unstable models tend to fragile against data
perturbations and may also quickly become useless in a control loop [14]. Scalability involves the computational
feasibility and practicality of solving the control problem, which may be an issue if the model is too large, and is
especially the case if one wishes to use large models in control loops or embedded systems.

Our starting point is the recently proposed Recurrent Equilibrium Network (REN) [15], an implicit model based
on the Deep Equilibrium (DEQ) [16] architecture. These implicit models are so-called because their evaluation
requires a fixpoint computation, with which they achieve remarkable performance on tasks ranging from optical
flow [17] to learning dynamics [18, 19]. Importantly, DEQs are also universal approximators [16, Theorem 2] as
they can represent traditional feedforward architectures, and therefore capture an expressive class of functions.
The key extension in [15] is in stability by construction: RENs can be parametrized so that incremental quadratic
constraints (IQCs) such as contractivity and dissipativity hold no matter how the model is trained. Moreover,
implicit models often have parameter sizes that are significantly smaller than other architectures [16, 20], meaning
that they are within the scalability of computational techniques from optimal control.

In this paper we study the optimal control of REN models. We assume a given REN model is fixed, and our
goal is to formulate a convex optimization problem that is queried to a solver. Our contributions are as follows:

1There do not yet exist good classification results or bounds on what model sizes and architectures are needed to represent and
learn different dynamical systems. Thus, model design is often heuristic-driven.

1

• We give a full derivation of the IQC-satisfying REN parametrizations presented in [15]. Rather than con-
tractivity, we derive a slightly weaker condition of incrementally nonexpansive. These sections are intended
as exposition for known results.

• We formulate the target-tracking MPC problem for RENs. This problem is fundamentally non-convex due
to the neural network activation functions, and so we present two different convex relaxations: a linear
relaxation and a semidefinite relaxation. We consider two cases of activations: when the activation is known
to be a ReLU, and when the activation is abstracted as sector-bounds by a finite collection of linear functions.

• We show that if one knows which IQC constraints hold, then the aforementioned optimization problems can
be further augmented to include sampled trajectory data.

• We make our implementation open source at https://github.com/SRI-CSL/TrinityAI/tree/nn-sos.

1.1 Neural Network-Based System Identification

We give a brief overview on learning and modelling dynamical systems using neural networks, and refer to [8] for
an extensive survey. Consider a continuous-time dynamical system

dx

dt
(t) = f(x(t), u(t)), y(t) = g(x(t), u(t)), (1)

where R≥0 is the nonnegative real numbers, x : R≥0 → Rnx is the state, u : R≥0 → Rnu is the control input, and
y : R≥0 → Rny is the output. One method to solve for the value of x(t) given some control input u is to apply a
forward Euler discretization to yield

xk+1 = xk + hf(xk, uk), x0 = x(0) (2)

where xk ≈ x(hk) ∈ Rnx approximates the state at t = hk and uk = u(hk). The goal in system identification is
to find functions fθ, gθ such that fθ ≈ f and gθ ≈ g, with respect to a parameter θ ∈ Rnθ . In our context, fθ and

gθ are neural networks — in particularly a REN. Given sampled points {x(i)
k , u

(i)
k , y

(i)
k }, one may formulate the

learning problem as

minimize
θ

L(θ) = 1

N

N∑
i=1

T∑
k=0

∥∥∥x(i)
k+1 − x

(i)
k − hfθ(x

(i)
k , u

(i)
k)

∥∥∥2
2
+

∥∥∥y(i)k − gθ(x
(i)
k , u

(i)
k)

∥∥∥2
2

(3)

2 Background

We present the formulation of the recurrent equilibrium network (REN) architecture [15], which is an instance of a
deep equilibrium model (DEQ) [16]. We then discuss the notions of incremental quadratic constraints (IQCs) such
as nonexpansiveness and QSR dissipativity. We also formulate the non-convex target-tracking control problem.

2.1 Recurrent Equilibrium Networks

Consider the learned dynamics model of (2),

xk+1 = xk + hfθ(xk, uk), yk = gθ(xk, uk),

where fθ, gθ are an REN 2 that is defined by the following set of equations,

∂xk = Wxzk +Axxk +Bxuk + bx (4.1)

vk = Wvzk +Avxk +Bvuk + bv, zk = σ(vk) (4.2)

yk = Wyzk +Ayxk +Byuk + by (4.3)

2The primary differnce between the formulation of RENs here and that of [15] is that (4) models fθ, while [15, Section 3] models
the 1-step discrete-time dynamics. Although these two formulations are equivalent, we found it easier to learn dynamics with (4).

2

where in particular fθ(xk, uk) = ∂xk and gθ(xk, uk) = yk. Here xk ∈ Rnk is the state, uk ∈ Rnu is the control
input, zk ∈ Rnz is the hidden layer, and yk ∈ Rny is the output, and σ : R → R is an activation function applied
coordinate-wise to vectors. Let θ collectively represent the parameters W(·), A(·), B(·), b(·).

Note that RENs are an implicit model because (4.2) is recursive in zk. We would like an REN to be well-posed :
for zk to exist and be unique for any given xk, uk. The sufficient conditions and computation of fixpoint solutions
are therefore of central importance to implicit models, and several results presented in the literature:

• [21] shows that if the Perron-Frobenius eigenvalue of |Wv|, the element-wise absolute value of Wv, is < 1,
then a unique solution can be found via iteration.

• [22] shows that if I −Wv is strongly monotone (i.e. 2I − (Wv +W⊤
v) ⪰ mI for some m > 0) 3, and if the

activation σ acts as the proximal operator [23] of a closed convex proper function, then this is a sufficient
condition. Moreover, operator splitting methods such as Peaceman-Rachford splitting may be applied.

• [24] relaxes the condition of [22] to require the existence of a strictly positive diagonal matrix Λ such that
2Λ− ΛWv −W⊤

v Λ ≻ 0. This is the same condition later leveraged in [15], and that we use in this paper.

A key contribution of [24] is to derive a general sufficient condition for fixpoint solutions using only the slopes
of the activations. We say that an (activation) function σ : R → R is [0, 1]-sector bounded if

0 ≤ σ(v)− σ(v′)

v − v′
≤ 1, for all v, v′ ∈ R.

This condition is satisfied by a number of popular activation functions, e.g. ReLU, leaky ReLU, tanh, sigmoid, and
has been widely used in the analysis of neural networks. This inequality can be exploited to give tight Lipschitz
constants [25], verify quadratic safety properties [26, 27], and importantly for RENs: a condition for when zk is
well-posed (exists and unique) in the fixpoint equations (4.2).

Lemma 1. Consider (4.2) and suppose that σ is [0, 1]-sector bounded. If there exists a diagonal matrix Λ ≻ 0
such that 2Λ− ΛWv −W⊤

v Λ ≻ 0, then zk is well-posed for any xk, uk.

Proof. This follows from [24, Theorem 1].

The [0, 1]-sector bound condition is an incremental constraint because it captures a relation between two different
trajectories. More generally for two zk, vk and z′k, v

′
k for which we can define their difference ∆zk = zk − z′k and

∆vk = vk − v′k, for which any diagonal Λ ≻ 0 will satisfy the useful inequality[
∆zk
∆vk

]⊤ [
−2Λ Λ
Λ 0

] [
∆zk
∆vk

]
≥ 0. (5)

Moreover, we can define the difference dynamics of (4) as

∆∂xk = Wx∆zk +Ax∆xk +Bx∆uk, ∆xk+1 = ∆xk + h∆∂xk (6.1)

∆vk = Wv∆zk +Av∆xk +Bv∆uk (6.2)

∆yk = Wy∆zk +Ay∆xk +By∆uk (6.3)

2.1.1 Sector Bounded via Linear Functions

The notion of sector-boundedness earlier assumed that a function is zero at the origin. A more general definition
can be given. We say that a function σ : R → R is sector-bounded by the linear functions a, b : R → R if

(σ(x)− a(x))(σ(x)− b(x)) ≤ 0, for all x ∈ R.

This extension is relevant as it lets us to bound activations like tanh using sectors that may not be origin-centered.

3We write A ≻ 0 (resp. A ⪰ 0) to mean that a symmetric matrix A is positive definite (resp. positive semidefinite). Some authors
such as [22] extend definiteness to nonsymmetric matrices via symmetrization, e.g. B ≻ 0 iff B +B⊤ ≻ 0.

3

2.2 Incremental Quadratic Constraints

Stability is of central importance to control theory. Many different notions of stability exist [10], but usually a
system is considered stable if it is robust against small perturbations: slight changes to the initial condition do not
lead to drastically diverging trajectories. In this work we investigate two kinds of stability through the perspective
of incremental quadratic constraints (IQCs) [28]: incremental nonexpansiveness, and incremental QSR dissipative.

2.2.1 Incrementally Nonexpansive

We say that the dynamical system (1) is incrementally nonexpansive if there exists a storage function V∆ :
Rnx×nx → R≥0 with V∆(x(t), x(t)) = 0 for all t, such that for any two trajectories x, x′ with the same input ũ,

V∆(x(t1), x
′(t1)) ≤ V∆(x(t0), x

′(t0)) (7)

Here V∆(x(t), x
′(t)) can be interpreted as the relative energies between trajectories x, x′ at time t. Incremental

nonexpansive therefore means that under the same control input, the relative energy of two trajectories do not
increase. A sufficient condition is to find a V∆ of form

V∆(x, x
′) = (x− x′)⊤P (x− x′), P ≻ 0.

2.2.2 Incrementally QSR Dissipative

Another form of incremental stability is known as incremental QSR dissipativity [29], which asserts that the
relative “energy” between two trajectories cannot increase without external inputs. We say that the dynamical
system (1) is incrementally dissipative with respect to the supply function S∆ : Rnu×nu×ny×ny → R if there
exists a storage function V∆ : Rnx×nx → R≥0 with V∆(x(t), x(t)) = 0 for all t, such that for any two trajectories
(x, u, y), (x′, u′, y′),

V∆(x(t1), x
′(t1)) ≤ V∆(x(t0), x

′(t0)) +

∫ t1

t0

S∆(u(t), u
′(t), y(t), y′(t)) dt , for all t0, t1 ∈ R≥0 with t0 ≤ t1. (8)

Similar to incremental nonexpansiveness, V∆(x(t), x
′(t)) can be interpreted as the relative energy between between

the trajectories x, x′ at time t, while S∆ measures the relative power in-flow to the systems. Many common cases
for S∆ are quadratic, and are therefore parametrizable by a triplet of matrices (Q,S,R) via

S∆(u, u
′, y, y′) =

[
y − y′

u− u′

]⊤ [
Q S
S⊤ R

] [
y − y′

u− u′

]
, (9)

where Q,R are symmetric, in which case we use the term incrementally QSR dissipative. Moreover, it is common
to restrict the search for V∆ to a positive-definite quadratic function, such that V∆ takes form

V∆(x, x
′) = (x− x′)⊤P (x− x′), P ≻ 0.

Note that (8) extends to the discrete-time systems (2) case when the integral is replaced with a summation.

4

2.3 Open Loop Model Predictive Control

For an initial state x0 and reference trajectory x⋆
0, x

⋆
1, . . . , x

⋆
T over horizon T , the target-tracking MPC problem is

minimize
z,x,u

J(x⋆, x, u) :=
1

2

T∑
k=0

(x⋆
k − xk)

⊤Jx(x
⋆
k − xk) + u⊤

k Juuk (10.1)

subject to xk+1 = xk + h∂xk (10.2)

∂xk = Wxzk +Axxk +Bxuk + bx (10.3)

vk = Wvzk +Avxk +Bvuk + bv (10.4)

zk = σ(vk) (10.5)

where J is the objective function to be minimized, and the cost matrices Jx, Ju ≻ 0 are given. The intent of this
formulation is that a solver is to be run periodically in a loop to generate new control inputs.

3 Incrementally Nonexpansive Parametrizations of RENs

We first present a convex parametirzation of nonexpansive RENs in Section 3.1: we state a condition for well-
posedness and incrementally nonexpansive as a linear matrix inequality (LMI) in the model weights θ, such
that any θ which induces a feasible LMI will have the desired properties. Then in Section 3.2 we give a free
(unconstrained) parametrization to a subset of the feasible LMI solutions: we show how to extract a well-posed
and incrementally nonexpansive model from any semidefinite matrix obeying a specific form.

Together with Section 4, this is a more complete derivation of what is shown in [15, Section 4, Section 5]. As our
formulation of RENs are different but equivalent, the derivation is likewise similar. A minor difference, however,
is that [15] enforces contractiveness, which is a slightly stronger condition that nonexpansiveness.

3.1 Convex Parametrization

To show incrementally non-expansive it suffices to find a Lyapunov-like P ≻ 0 such that

∆x⊤
k+1P∆xk+1 ≤ ∆x⊤

k P∆xk, (11)

and using (5) a sufficient condition

∆x⊤
k P∆xk −∆x⊤

k+1P∆xk+1 ≥
[
∆zk
∆vk

]⊤ [
−2Λ Λ
Λ 0

] [
∆zk
∆vk

]
, (12)

where ∆uk = 0 for analyzing nonexpansiveness. The RHS expands as[
∆zk
∆vk

]⊤ [
−2Λ Λ
Λ 0

] [
∆zk
∆vk

]
=

[
∆zk
∆xk

]⊤ [
−2Λ + ΛWv +W⊤

v Λ ΛAv

A⊤
v Λ 0

] [
∆zk
∆xk

]
A sufficient condition for (12) is therefore[

0
I

]
P

[
0
I

]⊤
−
[

hW⊤
x

I + hA⊤
x

]
P

[
hW⊤

x

I + hA⊤
x

]⊤
⪰

[
−2Λ + ΛWv +W⊤

v Λ ΛAv

A⊤
v Λ 0

]
,

where (12) is recovered by multiplying both sides with
[
∆z⊤k ∆x⊤

k

]⊤
. Rearranging this we get[

2Λ− ΛWv −W⊤
v Λ −ΛAv

−A⊤
v Λ P

]
−
[

hW⊤
x

I + hA⊤
x

]
P

[
hW⊤

x

I + hA⊤
x

]⊤
⪰ 0 (13)

5

Let us introduce the variable substitutions

P = E⊤P−1E, Wv = ΛWv, Av = ΛAv, Wx = EhWx, Ax = E(I + hAx),

where E is invertible. Then (13) is rearranged as[
2Λ−Wv −W⊤

v −Av

−A⊤
v E⊤P−1E

]
−

[
W⊤

x

A⊤
x

]
P−1

[
W⊤

x

A⊤
x

]⊤
⪰ 0,

and using the inequality E⊤P−1E ⪰ E + E⊤ − P from [30, 7.2.P17], a sufficient condition is[
2Λ−Wv −W⊤

v −Av

−A⊤
v E + E⊤ − P

]
−
[
W⊤

x

A⊤
x

]
P−1

[
W⊤

x

A⊤
x

]⊤
⪰ 0,

and since P ≻ 0, using the Schur complement this is equivalent to2Λ−Wv −W⊤
v −Av W⊤

x

−A⊤
v E + E⊤ − P A⊤

x

Wx Ax P

 ⪰ 0. (14)

Call the variables of (14) by

ω = (Wx,Ax,Wv,Av,Λ,P, E),

where the convex parametrization can be described by the set

Ω =
{
ω : P,Λ ≻ 0, Λ diagonal, 2Λ−Wv −W⊤

v ≻ 0, (14) holds
}
.

Theorem 1. A model (4) with parameters from ω ∈ Ω is well-posed and incrementally nonexpansive.

Proof. For well-posed, by Lemma (1) the condition 2Λ − Wv − W⊤
v ≻ 0 suffices to ensure well-posedness. For

incrementally nonexpansive, observe that (14) is a sufficient condition for (12).

3.2 Free Parametrization

We use a Burer-Monteiro style parametrization [31] for (14), which has form

M =

M11 M12 M13

M⊤
12 M22 M23

M⊤
13 M⊤

23 M33

 = X⊤X +

εI 0
εI

 , (15)

where the εI in the appropriate components ensures positive definiteness. From this we get

Wx = M⊤
13, Ax = M⊤

23, Av = −M12, P = M33,

and note that E can be described as

E =
1

2

(
M22 + P + Y − Y ⊤), Y ∈ Rnx×nx is free.

Let us parametrize Λ = diag(eλ1 , . . . , eλnz) where λ ∈ Rnz , then

Wv = Λ− 1

2

(
M11 + Z − Z⊤), Z ∈ Rnz×nz is free.

The free parameters are therefore:

θ = (Wy, Ay, By, Bx, Bv, X, Y, Z, λ).

6

4 Incrementally QSR Dissipative Parametrizations of RENs

We give parametrizations to enforce that the REN (4) is well-posed and incrementally QSR dissipative.

4.1 Convex Parametrization

Suppose that Q,S,R is given and consider any two trajectories (x, u, y) and (x′, u′, y′) of the REN (4). A sufficient
condition to ensure incremental QSR dissipativity is if there exists P ≻ 0 such that

∆x⊤
k+1P∆xk+1 ≤ ∆x⊤

k P∆xk +

[
∆yk
∆uk

]⊤ [
Q S
S⊤ R

] [
∆yk
∆uk

]
, (16)

and using (5), a sufficient condition for (16) to hold is therefore

∆x⊤
k P∆xk +

[
∆yk
∆uk

]⊤ [
Q S
S⊤ R

] [
∆yk
∆uk

]
−∆x⊤

k+1P∆xk+1 ≥
[
∆zk
∆vk

]⊤ [
−2Λ Λ
Λ 0

] [
∆zk
∆vk

]
, (17)

where in particular the RHS expands as

[
∆zk
∆vk

]⊤ [
−2Λ Λ
Λ 0

] [
∆zk
∆vk

]
=

∆zt
∆xt

∆ut

⊤ −2Λ + ΛWv +W⊤
v Λ ΛAv ΛBv

A⊤
v Λ 0 0

B⊤
v Λ 0 0

∆zt
∆xt

∆ut

 ,

and the QSR term expands as

[
∆yk
∆uk

]⊤ [
Q S
S⊤ R

] [
∆yk
∆uk

]
=

∆zt
∆xt

∆ut

⊤

 0 0 W⊤

y S
0 0 A⊤

y S
S⊤Wy S⊤Ay B⊤

y S + S⊤By +R

+

W⊤
y

A⊤
y

B⊤
y

Q

W⊤
y

A⊤
y

B⊤
y

⊤
∆zt
∆xt

∆ut

 .

The task is to construct a parametrization of (17) that is convex in its variables (REN parameters, multipliers,
and possible slack variables). To begin, a sufficient condition for (17) is0I

0

P

0I
0

⊤

+

 0 0 W⊤
y S

0 0 A⊤
y S

S⊤Wy S⊤Ay B⊤
y S + S⊤By +R

+

W⊤
y

A⊤
y

B⊤
y

Q

W⊤
y

A⊤
y

B⊤
y

⊤

−

 hW⊤
x

I + hA⊤
x

hB⊤
x

P

 hW⊤
x

I + hA⊤
x

hB⊤
x

⊤

⪰

−2Λ + ΛWv +W⊤
v Λ ΛAv ΛBv

A⊤
v Λ 0 0

B⊤
v Λ 0 0

where (17) is recovered by multiplying both sides by

[
∆z⊤k ∆x⊤

k ∆u⊤
k

]⊤
. Rearranging this we get2Λ− ΛWv −W⊤

v Λ −ΛAv W⊤
y S − ΛBv

−A⊤
v Λ P A⊤

y S
S⊤Wy −B⊤

v Λ S⊤Ay B⊤
y S + S⊤By +R

+

⋆⋆
⋆

Q

W⊤
y

A⊤
y

B⊤
y

⊤

−

⋆⋆
⋆

P

 hW⊤
x

I + hA⊤
x

hB⊤
x

⊤

⪰ 0. (18)

However, quadratic expressions such as ΛAv means that (18) does not describe a convex set of (θ, P,Λ), where θ
is the collective REN parameters and P,Λ ≻ 0 with Λ diagonal. To alleviate this we introduce the variables

P = E⊤P−1E, Wv = ΛWv, Av = ΛAv, Bv = ΛBv, Wx = EhWx, Ax = E(I + hAx), Bx = EhBx,

where E is any invertible matrix. Then (18) is equivalent to2Λ−Wv −W⊤
v −Av W⊤

y S − Bv

−A⊤
v E⊤P−1E A⊤

y S
S⊤Wy − B⊤

v S⊤Ay B⊤
y S + S⊤By +R

+

⋆⋆
⋆

Q

W⊤
y

A⊤
y

B⊤
y

⊤

−

⋆⋆
⋆

P−1

W⊤
x

A⊤
x

B⊤
x

⊤

⪰ 0

7

Using the inequality E⊤P−1E ⪰ E + E⊤ − P from [30, 7.2.P17], we have that a sufficient condition for (18) is2Λ−Wv −W⊤
v −Av W⊤

y S − Bv

−A⊤
v E + E⊤ − P A⊤

y S
S⊤Wy − B⊤

v S⊤Ay B⊤
y S + S⊤By +R

+

⋆⋆
⋆

Q

W⊤
y

A⊤
y

B⊤
y

⊤

+

⋆⋆
⋆

P−1

W⊤
x

A⊤
x

B⊤
x

⊤

⪰ 0

Moreover, let us decompose Q = Q+ − Q− into its positive and negative semidefinite components such that
Q+, Q− ⪰ 0. Then a further sufficient condition for (18) is2Λ−Wv −W⊤

v −Av W⊤
y S − Bv

−A⊤
v E + E⊤ − P A⊤

y S
S⊤Wy − B⊤

v S⊤Ay B⊤
y S + S⊤By +R

−

⋆⋆
⋆

Q−

W⊤
y

A⊤
y

B⊤
y

⊤

+

⋆⋆
⋆

P−1

W⊤
x

A⊤
x

B⊤
x

⊤

⪰ 0,

and since P ≻ 0, by the Schur complement this is equivalent to
2Λ−Wv −W⊤

v −Av W⊤
y S − Bv W⊤

x

−A⊤
v E + E⊤ − P A⊤

y S A⊤
x

S⊤Wy − B⊤
v S⊤Ay B⊤

y S + S⊤By +R B⊤
x

Wx Ax Bx P

−

W⊤

y

A⊤
y

B⊤
y

0

Q−

W⊤

y

A⊤
y

B⊤
y

0

⊤

⪰ 0. (19)

Let us denote the variables of (19) by

ω = (Wx,Ax,Bx,Wv,Av,Bv,Wy, Ay, By,Λ,P, E),

where to recover the original parameters θ we have

hWx = E−1Wx, I + hAx = E−1Ax, hBx = E−1Bx, Wv = Λ−1Wv, Av = Λ−1Av, Bv = Λ−1Bv.

To see that an invertible E exists provided (19) holds, recall that the block-diagonals of positive semidefinite
matrices are positive semidefinite. Furthermore since Q− ⪰ 0, we have E +E⊤ −P ⪰ 0, and because P ≻ 0, any
such E is therefore invertible. This allows us to form the following convex parametrization of RENs:

Ω =
{
ω : P,Λ ≻ 0, Λ diagonal, 2Λ−Wv −W⊤

v ≻ 0, (19) holds
}

(20)

Theorem 2. A model (4) with parameters from ω ∈ Ω is well-posed and incrementally QSR dissipative.

Proof. Any model with ω ∈ Ω is incrementally QSR dissipative since (19) is a sufficient condition of (16). Moreover
since Wv = ΛWv, by Lemma 1 the condition 2Λ−Wv −W⊤

v ≻ 0 implies that the model is well-posed.

4.2 Free Parametrization

In this section we derive a sufficient unconstrained parametrization of (19). First, note that if we introduce
Q = Q− + εqI, then a sufficient condition for (19) is achieved by substituting Q for Q−. An insight in [15] is to
isolate the y-parameters from the x, v-parameters via the Schur complement. We do this by swapping the third
and fourth block row and columns of (19) (after Q substitution) to yield:

2Λ−W⊤
v −W⊤

v −Av W⊤
x W⊤

y S − Bv

−A⊤
v E + E⊤ − P A⊤

x A⊤
y S

Wx Ax P Bx

S⊤Wy − B⊤
v S⊤Ay B⊤

x B⊤
y S + S⊤By +R

−

W⊤

y

A⊤
y

0
B⊤

y

Q

W⊤

y

A⊤
y

0
B⊤

y

⊤

⪰ 0

which is equivalent to
2Λ−W⊤

v −W⊤
v −Av W⊤

x W⊤
y S − Bv −W⊤

y QBy

−A⊤
v E + E⊤ − P A⊤

x A⊤
y S −A⊤

y QBy

Wx Ax P Bx

S⊤Wy − B⊤
v −B⊤

y QWy S⊤Ay −B⊤
y QAy B⊤

x B⊤
y S + S⊤By +R−B⊤

y QBy

−

W⊤

y

A⊤
y

0
0

Q

W⊤

y

A⊤
y

0
0

⊤

⪰ 0,

8

which by the Schur complement is equivalent to2Λ−Wv −W⊤
v −Av W⊤

x

−A⊤
v E + E⊤ − P A⊤

x

Wx Ax P

−

⋆⋆
⋆

R−1

W⊤
y S − Bv −W⊤

y QBy

A⊤
y S −A⊤

y QBy

Bx

⊤

−

⋆⋆
⋆

Q

W⊤
y

A⊤
y

0

⊤

⪰ 0, (21)

where R = B⊤
y S + S⊤By + R − B⊤

y QBy ≻ 0. The idea is that we will treat the Wy, Ay, By,Bx as free variables

and use a Burer-Monteiro [31] style of parametrization (i.e. X⊤X+εI) to stand in for the left term — from which
we can derive the remaining parameters of ω. We first find a sufficient free parametrization of By, from which we
can derive R because Q, R, S are given.

4.2.1 Solving for By

Consider the expression

R = B⊤
y S + S⊤By +R−B⊤

y QBy ≻ 0, (22)

where Q, S,R are given (i.e. fixed). Our goal is to find a free parametrization of By such that R is obviously
positive definite. Let us conjecture that By has form By = Q−1S+F , where F is variable and to-be-parametrized,
in which case (22) becomes

R = (Q−1S + F)⊤S + S⊤(Q−1S + F) +R− (Q−1S + F)⊤Q(Q−1S + F)

= S⊤Q−1S + F⊤S + S⊤Q−1S + S⊤F +R− (S⊤Q−1S + S⊤F + F⊤S + F⊤QF)

= S⊤Q−1S +R− F⊤QF

We can further simplify this by taking F = U−1
Q G, where Q = U⊤

QUQ is a Cholesky factorization of Q and G is a
variable to-be parametrized. Then this reduces to finding G such that

S⊤Q−1S +R−G⊤G ≻ 0 (23)

Note that these simplifications do not reduce the possible values of By due to the relation By = Q−1S + U−1
Q G.

Suppose that S⊤Q−1S+R = U⊤
RUR is a Cholesky factorization, then we may set G = HUR, where H is variable,

such that this becomes

S⊤Q−1S +R−G⊤G = U⊤
R (I −H⊤H)UR ≻ 0

It then suffices to find a free parametrization of H such that I −H⊤H ≻ 0. One idea is to take

H⊤H =
(
(1 + ε)I +H⊤

0 H0

)−1
, H0 ∈ Rnu×nu ,

which will ensure that I ≻ H⊤H ≻ 0 by construction. Then By = Q−1S + U−1
Q HUR.

4.2.2 Solving for the Other Parameters

The idea is to rewrite (21) asM11 M12 M13

M⊤
12 M22 M23

M⊤
13 M⊤

23 M33

 = X⊤X + εI +

⋆⋆
⋆

R−1

W⊤
y S − Bv −W⊤

y QBy

A⊤
y S −A⊤

y QBy

Bx

⊤

+

⋆⋆
⋆

Q

W⊤
y

A⊤
y

0

⊤

,

where knowing By we can compute the value of R−1. Since Wy, Ay,Bx,Bv are free parameters, we can compute
the value of both the R−1 and Q terms. The task then is to pattern match the M block matrix as follows,M11 M12 M13

M⊤
12 M22 M23

M⊤
13 M⊤

23 M33

 =

2Λ−Wv −W⊤
v −Av W⊤

x

−A⊤
v E + E⊤ − P A⊤

x

Wx Ax P

9

where we see that

Wx = M⊤
13, Ax = M⊤

23, Av = −M12, P = M33,

and where one can write E as

E =
1

2

(
M22 + P + Y − Y ⊤), Y ∈ Rnx×nx is free.

Also take

Wv = Λ− 1

2

(
M11 + Z − Z⊤), Z ∈ Rnz×nz is free.

The free parameters are then

θ = (Wy, Ay, By, Bx, Bv, X, Y, Z, λ).

5 Formulation of Control Problems

We now assume that the REN model (4) is given, and turn our attention to formulating convex relaxations of the
optimal control problem.

5.1 Linear Relaxation assuming ReLU

Suppose that σ = ReLU. One way to relax (10) is to write

minimize
z,x,u

J(x⋆, x, u) (24.1)

subject to xk+1 = xk + h∂xk (24.2)

∂xk = Wxzk +Axxk +Bxuk + bx (24.3)

zk ≥ 0, zk = Wvzk +Avxk +Bvuk + bv (24.4)

The relaxation is that the constraint zk = σ(vk) in (10.5) is replaced by the linear constraints zk ≥ vk and zk ≥ 0.

5.2 Semidefinite Relaxations assuming ReLU

Suppose that σ = ReLU. Another way to relax the activation is to note the relation

zk = ReLU(vk) ⇐⇒

zk ≥ 0

zk ≥ vk

zk ⊙ (zk − vk) = 0

, (25)

and note that the element-wise product of two vectors satisfies

(Avu⊤)i =

1∑
k=1

(Av)ik(u
⊤)ki = (Av)iui = (u⊙Av)i =⇒ u⊙Av = diag(Avu⊤).

Moreover, since vk = Wvzk +Avxk +Bvuk + bv, we need a way to induce the quadratic zkz
⊤
k , zkx

⊤
k , zku

⊤
k terms

in a convex manner. The idea is to use a semidefinite relaxation of form

Mk =

(Mk)zz (Mk)zx (Mk)zu zk
(Mk)xz (Mk)zz (Mk)xu xk

(Mk)uz (Mk)ux (Mk)uu uk

z⊤k x⊤
k u⊤

k 1

 ⪰ 0, (26)

10

which will give the relaxations

(Mk)zz ≈ zkz
⊤
k , (Mk)zx ≈ zkx

⊤
k , (Mk)zu ≈ zku

⊤
k , (Mk)xx ≈ xkx

⊤
k , (Mk)xu ≈ xku

⊤
k , (Mk)uu ≈ uku

⊤
k .

Let us now consider how to relax the zk ⊙ vk term, which expands as

zk ⊙ vk = zk ⊙ (Wvzk +Avxk +Bvuk + bv)

= diag(Wvzkz
⊤
k) + diag(Wvxkz

⊤
k) + diag(Bvukz

⊤
k) + zk ⊙ bv

whose relaxation we then define in terms of Mk as

R[zk ⊙ vk] = diag(Wv(Mk)zz) + diag(Av(Mk)xz) + diag(Bv(Mk)uz) + zk ⊙ bk.

Crudely, we intend R to be an “operator” that relaxes the expression inside the brackets [·], and we use this with
the same intuition as ≈. Using this notation, the ReLU conditions (25) can then be relaxed as

zk = ReLU(vk) ≈

zk ≥ 0,

zk ≥ vk = Wvzk +Avxk +Bvuk + bv,

diag((Mk)zz) = R[zk ⊙ vk]

The SDP relaxation of the control problem with ReLU activations is then

minimize
z,x,u,Mk

J(x⋆, x, u) (27.1)

subject to Mk =

(Mk)zz (Mk)zx (Mk)zu zk
(Mk)xz (Mk)zz (Mk)xu xk

(Mk)uz (Mk)ux (Mk)uu uk

z⊤k x⊤
k u⊤

k 1

 ⪰ 0 (27.2)

xk+1 = xk + h∂xk (27.3)

∂xk = Wxzk +Axxk +Bxuk + bx (27.4)

zk ≥ 0, zk ≥ Wvzk +Avxk +Bvuk + bv, diag((Mk)zz) = R[zk ⊙ vk] (27.5)

5.3 Semidefinite Relaxations assuming Sector Bounds by Linear Functions

Let (a(1), b(1)), (a(2), b(2)), . . . : R → R be a finite collection of linear functions that sector-bound the activation via(
z − a(i)(v)

)(
z − b(i)(v)

)
≤ 0, for all v ∈ R and z = σ(v).

This framework admits monotone nondecreasing functions like tanh and sigmoid 4. Our goal is to construct a
semidefinite relaxation similar in nature to Mk in (26). Consider any a, b in the sequence, then as a vector-valued
inequality this becomes,

z ⊙ z ≤ z ⊙ (a(v) + b(v))− a(v)⊙ b(v). (28)

Noting that a(v) = a0 + a1v and b(v) = b0 + b1v, where each a0, a1, b0, b1 ∈ R, we may then write (28) as

z ⊙ z ≤ z ⊙
(
(a1 + b1)v + (a0 + b0)1

)
−

(
a1b1v ⊙ v + (a0b1 + a1b0)v + a0b01

)
. (29)

Let us define Mk analogously as before in (26). We have previously analyzed how the zk ⊙ vk terms expand, and
so it remains to analyze the vk ⊙ vk terms and their respective relaxations. In particular,

vk ⊙ vk = (Wvzk +Avxk +Bvuk + bv)⊙ (Wvzk +Avxk +Bvuk + bv)

= Wvzk ⊙Wvzk +Avxk ⊙Avxk +Bvuk ⊙Bvuk + bv ⊙ bv

+ 2Wvzk ⊙Avxk + 2Wvzk ⊙Bvuk + 2Wvzk ⊙ bv

+ 2Avxk ⊙Bvuk + 2Avxk ⊙ bv + 2Bvuk ⊙ bv,

4This also admits ReLU, in which case the relaxation in Section 5.2 is recommended.

11

which suggests the relaxation

R[vk ⊙ vk] = diag(Wv(Mk)zzW
⊤
v) + diag(Av(Mk)xxA

⊤
v) + diag(Bv(Mk)uuB

⊤
v) + bv ⊙ bv

+ 2diag(Wv(Mk)zxA
⊤
v) + 2diag(Wv(Mk)zuB

⊤
v) + 2Wvzk ⊙ bv

+ 2diag(Av(Mk)xuB
⊤
v) + 2Avxk ⊙ bv + 2Bvuk ⊙ bv.

For the sector-bounded condition of a(i), b(i) on zk, vk, we present the following relaxation for the RHS of (29),

which we call S
(i)
k ,

R
[
S
(i)
k

]
=

(
a
(i)
1 + b

(i)
1

)
R[zk ⊙ vk] +

(
a
(i)
0 + b

(i)
0

)
zk − a

(i)
1 b

(i)
1 R[vk ⊙ vk]−

(
a
(i)
0 b

(i)
1 + a

(i)
1 b

(i)
0

)
vk − a

(i)
0 b

(i)
0 1 (30)

The relaxed control problem is then

minimize
z,x,u,Mk

J(x⋆, x, u) (31.1)

subject to Mk =

(Mk)zz (Mk)zx (Mk)zu zk
(Mk)xz (Mk)zz (Mk)xu xk

(Mk)uz (Mk)ux (Mk)uu uk

z⊤k x⊤
k u⊤

k 1

 ⪰ 0 (31.2)

xk+1 = xk + h∂xk (31.3)

∂xk = Wxzk +Axxk +Bxuk + bx (31.4)

diag((Mk)zz) ≤ R
[
S
(i)
k

]
, i = 1, 2, . . . (31.5)

5.3.1 Computationally Efficient Implementations

Part of the formulation for (31) requires the computation of matrices of form diag(AMB⊤), where M are the opti-
mization variables and A,B are given. This is a computational bottleneck for Julia’s mathematical programming
library JuMP.jl, which must handle symbolic matrix manipulations. Crucially, an observation is that we care
only about the diagonal elements of AMB⊤, so it is possible to simplify the two matrix-matrix multiplications
with symbolic optimization variables. In particular, note that

(AMB⊤)ii =
∑
k

Aik(MB⊤)ki =
∑
k

Aik

∑
l

MklB
⊤
li =

∑
k,l

AikMklB
⊤
li =

∑
k,l

MklAikBil

In our setting the matrices A,B are the REN parameters and so will remain the same in many computations,
while it is M (which stands in for (Mk)zz, (Mk)zx, . . .) that will vary for each step of the horizon. The idea is to
first compute and cache the terms involving A,B to avoid repeated computations. Let us define a 3-tensor A∧B
where each element is (A ∧B)ikl = AikBil, such that

(AMB⊤)ii =
∑
k,l

MklAikBil =
∑
k,l

Mkl(A ∧B)ikl

The computation of A ∧ B is relatively fast since we need only operate on known scalar values, and not the
symbolic optimization variables in M . For each i = 1, . . . , nz the slice (A ∧ B)i is a matrix the same dimension
of M , and so computation of the sum can be expressed as an element-wise product followed by summation of all
terms, which is relatively fast for JuMP.jl to execute. Programmatically in Julia, to create the (Av(Mk)xuB

⊤
v)ii

term we would do

AB = zeros(nz, nx, nx) # The 3-tensor we are caching

for i in 1:nz; for k in 1:nx; for l in 1:nu; AB[i,k,l] = Av[i,k]*Bv[i,l] end end end

AMkB = zeros(nz) # The result of diag(AMkB)

for i in 1:nz; AMkB[i] = sum(Mkxu.*AB[i,:,:]) end

12

6 Data-Augmented Optimization

IQCs relate different trajectories to each other, which opens the possibility that sampled trajectories of the
REN (4) may be used to tighten the relaxations of the previously presented convex problems. For instance, one
may first quickly solve and simulate the trajectory of the linear relaxation (24) in order to gain data samples for
the more computationally expensive semidefinite relaxations (27) and (31). We study only the case of incremental
nonexpansiveness for now, as it is a simpler IQC than incremental QSR dissipativity.

6.1 Assuming Incremental Nonexpansiveness

Suppose that we know the REN (4) satisfies incremental nonexpansiveness, i.e.

∆x⊤
k+1P∆xk+1 ≤ ∆x⊤

k P∆xk, for any two trajectories x, u and x′, u′,

where the difference dynamics are given in (6) and P ≻ 0 is known 5. Also suppose that we have a collection of
trajectories {x̃(j), ũ(j)}Nj=1 sampled from the model (4). The idea is to further constrain the matrix variables Mk

in problems (27) and (31) using these sampled data. Let us define

∆z
(j)
k = zk − z̃

(j)
k , ∆x

(j)
k = xk − x̃

(j)
k , ∆u

(j)
k = uk − ũ

(j)
k ,

Sometimes omitting the (·)(j) superscript for conciseness and using the cyclic permutation of traces, the incremental
nonexpansive condition is then equivalent to

∆x⊤
k+1P∆xk+1 ≤ ∆x⊤

k P∆xk

∆x⊤
k P∆xk + 2h∆x⊤

k P∆∂xk + h2∆∂x⊤
k P∆∂xk ≤ ∆x⊤

k P∆xk

2tr
(
P∆∂xk∆x⊤

k

)
+ htr

(
P∆∂xk∆∂x⊤

k

)
≤ 0

(32)

To embed this information into a semidefinite program, we need to find the appropriate semidefinite relaxations
of the vector-vector outerproducts for ∆∂xk∆x⊤

k and ∆∂xk∆∂x⊤
k . In particular, note that

∆z
(j)
k ∆z

(j)⊤
k =

(
zk − z̃

(j)
k

)(
zk − z̃

(j)
k

)⊤
= zkz

⊤
k − zkz

(j)⊤
k − z

(j)
k z⊤k + z

(j)
k z

(j)⊤
k ,

∆z
(j)
k ∆x

(j)⊤
k =

(
zk − z̃

(j)
k

)(
xk − x̃

(j)
k

)⊤
= zkx

⊤
k − zkx̃

(j)⊤
k − z̃

(j)
k x⊤

k + z̃
(j)
k x̃

(j)⊤
k ,

and analogously for ∆zk∆u⊤
k , ∆xk∆x⊤

k , ∆xk∆u⊤
k , ∆uk∆u⊤

k . This motivates us to define the relaxations

(∆Mk)
(j)
zz = (Mk)zz − zkz̃

(j)⊤
k − z̃

(j)
k z⊤k + z̃

(j)
k z̃

(j)⊤
k ,

(∆Mk)
(j)
zx = (Mk)zx − zkx̃

(j)⊤
k − z̃

(j)
k x⊤

k + z̃
(j)
k x̃

(j)⊤
k ,

and analogously for the other blocks of ∆M
(j)
k . Thus, we expand the quadratic terms in (32),

∆∂x
(j)
k ∆x

(j)⊤
k = Wx∆zk∆x⊤

k +Ax∆xk∆x⊤
k +Bx∆uk∆x⊤

k

R
[
∆∂x

(j)
k ∆x

(j)⊤
k

]
= Wx(∆Mk)

(j)
zx +Ax(∆Mk)

(j)
xx +Bx(∆Mk)

(j)
ux

∆∂x
(j)
k ∆∂x

(j)⊤
k =

W⊤
x

A⊤
x

B⊤
x

⊤
∆z

(j)
k

∆x
(j)
k

∆u
(j)
k

∆z

(j)
k

∆x
(j)
k

∆u
(j)
k

⊤ W⊤

x

A⊤
x

B⊤
x

R
[
∆∂x

(j)
k ∆∂x

(j)⊤
k

]
=

W⊤
x

A⊤
x

B⊤
x

⊤
(∆Mk)

(j)
zz (∆Mk)

(j)
zx (∆Mk)

(j)
zu

(∆Mk)
(j)
xz (∆Mk)

(j)
xx (∆Mk)

(j)
xu

(∆Mk)
(j)
uz (∆Mk)

(j)
ux (∆Mk)

(j)
uu

W⊤

x

A⊤
x

B⊤
x

5A solution to (14) allows us to recover P .

13

The derivation in (32) is then relaxed as

2tr
(
PR

[
∆∂x

(j)
k ∆x

(j)⊤
k

])
+ htr

(
PR

[
∆∂x

(j)
k ∆∂x

(j)⊤
k

])
≤ 0 (33)

That is, (32) is a semidefinite relaxation of the the incrementally nonexpansive constraint in relation to the sampled
data {x̃(j), ũ(j)}Nj=1. This can be augmented to both the SDP relaxed ReLU problem (27) and the sector-bounded
problem (31). We use the sector-bounded problem to illustrate this formulation:

minimize
z,x,u,Mk

J(x⋆, x, u) (34.1)

subject to (31.2), (31.3), (31.4), (31.5), (34.2)

2tr
(
PR

[
∆∂x

(j)
k ∆x

(j)⊤
k

])
+ htr

(
PR

[
∆∂x

(j)
k ∆∂x

(j)⊤
k

])
≤ 0, j = 1, . . . , N (34.3)

7 Experiments

For convention, let us call the dynamics of (2) the true model and that of (4) the learned model or REN. When
the REN is subject to additional IQC constraints we will make this explicit, and for instance say: REN satisfying
incremental nonexpansiveness. There are a number of experiments that are required to supplement the theory
presented in this paper.

Solver vs True Loss Take a control signal generated from the solver calls on problems (24), (27), (31), or (34).
We wish to compare the solver loss derived from the convex problem’s optimal value, with the true loss from
running u on the true system (2).

Additional Sector Bounds and Loss The formulation of (31) permits the use of multiple different linear
functions to sector bound the activation. We plan to focus on the tanh function, and examine the solver loss vs
the true loss as we more tightly constrain the tanh by linear sectors. Moreover, we would like to investigate the
solver runtime as more sectors are added.

Data Augmented Optimization We would like to see whether using trajectories will improve the solver loss
vs the true loss. Moreover, we would like to investigate the solver runtime as more trajectories are added. We
plan to try this assuming incremental nonexpansiveness first, as this is a simpler IQC.

Hidden Dimension vs Loss It would be interesting to study how large nz needs to be for the learned model
to well-approximate the true model.

7.1 Current Challenges

At the moment we are focused on using the free parametrization for incremental nonexpansiveness based on (14)
and (15). The biggest challenge at the moment is in training RENs, though a few other concerns are also present.
Below we document some of the challenges encountered so far while trying to learn simple dynamical systems like
the pendulum or cartpole.

Training Loss Goes to Infinity Using ReLU as the activation will sometimes make the training loss blow
up to infinity. This can be fixed by using tanh instead. We suspect this is because tanh might be easier for the
fixpoint solver to handle, but some reference implementation of RENs like [15] seem to have successfully used
ReLU. The work of [13] uses tanh. A workaround is to try to reimplement a fixpoint solver, but this may be more
work than it is worth if only to fix ReLU.

14

Training Seems to Stall Training with tanh seems to sometimes stall: a trajectory sampled from the learned
model may be quite off from the true model. Beyond using a larger hidden dimension nz, playing with the values of
ε, and experimenting with different learning rates and initial parameter conditions, we are short on ideas. At the
moment, a simple feedforward model with a few hundred neurons can get significantly much better loss than our
REN model with nz ≈ 100. We also do not wish to make nz too big, as this will affect the size of the semidefinite
constraints to be given to the solver.

Large Affine Expressions for JuMP The semidefinite relaxations, if encoded naively, will induce large affine
expressions for JuMP, Julia’s mathematical programming interface to solvers. These may slow down solver times,
but can usually be resolved with appropriate algebraic rewriting of constraints.

References

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[2] Lennart Ljung. System identification. In Signal analysis and prediction, pages 163–173. Springer, 1998.

[3] Oliver Nelles. Nonlinear dynamic system identification. In Nonlinear System Identification, pages 547–577.
Springer, 2001.

[4] S Narendra Kumpati, Parthasarathy Kannan, et al. Identification and control of dynamical systems using
neural networks. IEEE Transactions on neural networks, 1(1):4–27, 1990.

[5] Olalekan Ogunmolu, Xuejun Gu, Steve Jiang, and Nicholas Gans. Nonlinear systems identification using deep
dynamic neural networks. arXiv preprint arXiv:1610.01439, 2016.

[6] Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Multistep neural networks for data-driven
discovery of nonlinear dynamical systems. arXiv preprint arXiv:1801.01236, 2018.

[7] Steven L Brunton, Bernd R Noack, and Petros Koumoutsakos. Machine learning for fluid mechanics. Annual
review of fluid mechanics, 52:477–508, 2020.

[8] Christian Møldrup Legaard, Thomas Schranz, Gerald Schweiger, Ján Drgoňa, Basak Falay, Cláudio Gomes,
Alexandros Iosifidis, Mahdi Abkar, and Peter Gorm Larsen. Constructing neural network-based models for
simulating dynamical systems. arXiv preprint arXiv:2111.01495, 2021.

[9] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

[10] Hassan K Khalil. Nonlinear control, volume 406. Pearson New York, 2015.

[11] J Zico Kolter and Gaurav Manek. Learning stable deep dynamics models. Advances in neural information
processing systems, 32, 2019.

[12] Minghao Han, Yuan Tian, Lixian Zhang, Jun Wang, and Wei Pan. Reinforcement learning control of con-
strained dynamic systems with uniformly ultimate boundedness stability guarantee. Automatica, 129:109689,
2021.

[13] Luca Furieri, Clara Lućıa Galimberti, and Giancarlo Ferrari-Trecate. Neural system level synthesis: Learning
over all stabilizing policies for nonlinear systems. arXiv preprint arXiv:2203.11812, 2022.

[14] Giorgos Mamakoukas, Ian Abraham, and Todd D Murphey. Learning data-driven stable koopman operators.
arXiv preprint arXiv:2005.04291, 2020.

[15] Max Revay, Ruigang Wang, and Ian R Manchester. Recurrent equilibrium networks: Flexible dynamic models
with guaranteed stability and robustness. arXiv preprint arXiv:2104.05942, 2021.

[16] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural Information
Processing Systems, 32, 2019.

15

[17] Shaojie Bai, Zhengyang Geng, Yash Savani, and J Zico Kolter. Deep equilibrium optical flow estimation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 620–630,
2022.

[18] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. Advances in neural information processing systems, 31, 2018.

[19] Andreas Schlaginhaufen, Philippe Wenk, Andreas Krause, and Florian Dorfler. Learning stable deep dynamics
models for partially observed or delayed dynamical systems. Advances in Neural Information Processing
Systems, 34:11870–11882, 2021.

[20] Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium models. Advances in Neural
Information Processing Systems, 33:5238–5250, 2020.

[21] Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. Implicit deep learning.
SIAM Journal on Mathematics of Data Science, 3(3):930–958, 2021.

[22] Ezra Winston and J Zico Kolter. Monotone operator equilibrium networks. Advances in neural information
processing systems, 33:10718–10728, 2020.

[23] Ernest K Ryu and Stephen Boyd. Primer on monotone operator methods. Appl. Comput. Math, 15(1):3–43,
2016.

[24] Max Revay, Ruigang Wang, and Ian R Manchester. Lipschitz bounded equilibrium networks. arXiv preprint
arXiv:2010.01732, 2020.

[25] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient and
accurate estimation of lipschitz constants for deep neural networks. Advances in Neural Information Processing
Systems, 32, 2019.

[26] Mahyar Fazlyab, Manfred Morari, and George J Pappas. Safety verification and robustness analysis of neural
networks via quadratic constraints and semidefinite programming. IEEE Transactions on Automatic Control,
2020.

[27] Matthew Newton and Antonis Papachristodoulou. Neural network verification using polynomial optimisation.
In 2021 60th IEEE Conference on Decision and Control (CDC), pages 5092–5097. IEEE, 2021.

[28] David Angeli. A lyapunov approach to incremental stability properties. IEEE Transactions on Automatic
Control, 47(3):410–421, 2002.

[29] Chris Verhoek, Patrick JW Koelewijn, Roland Tóth, and Sofie Haesaert. Convex incremental dissipativity
analysis of nonlinear systems. arXiv preprint arXiv:2006.14201, 2020.

[30] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

[31] Samuel Burer and Renato DCMonteiro. A nonlinear programming algorithm for solving semidefinite programs
via low-rank factorization. Mathematical Programming, 95(2):329–357, 2003.

16

	Introduction
	Neural Network-Based System Identification

	Background
	Recurrent Equilibrium Networks
	Sector Bounded via Linear Functions

	Incremental Quadratic Constraints
	Incrementally Nonexpansive
	Incrementally QSR Dissipative

	Open Loop Model Predictive Control

	Incrementally Nonexpansive Parametrizations of RENs
	Convex Parametrization
	Free Parametrization

	Incrementally QSR Dissipative Parametrizations of RENs
	Convex Parametrization
	Free Parametrization
	Solving for By
	Solving for the Other Parameters

	Formulation of Control Problems
	Linear Relaxation assuming ReLU
	Semidefinite Relaxations assuming ReLU
	Semidefinite Relaxations assuming Sector Bounds by Linear Functions
	Computationally Efficient Implementations

	Data-Augmented Optimization
	Assuming Incremental Nonexpansiveness

	Experiments
	Current Challenges

