
Bityr: Type Inference on Binaries by Modeling Data Flows as

Graph Neural Networks

ABSTRACT

We propose Bityr, a framework for inferring fine-grained type in-
formation from binaries. Bityr employs a machine learning based
approach, and is meant to be usable by security analysts. To support
different architectures and compiler optimizations in a general and
precise manner, Bityr leverages an architecture-agnostic data-flow
analysis to extract a graph-based intra-procedural representation
of data-flow information. To scale to large binaries and cope with
missing inter-procedural information, Bityr encodes the represen-
tation using a graph neural network model. We have implemented
Bityr atop the angr framework which targets VEX IR. We evalu-
ated Bityr on a suite of 13,326 binaries ranging over 33 open-source
software projects compiled for x64, x86, ARM, and MIPS architec-
tures with different optimization levels. Bityr achieves precision
of 92.3%, 90.7%, 80.1%, and 78.3%, respectively, significantly out
performing the state-of-the-art approaches.

1 INTRODUCTION

Binary type inference is a core research challenge in binary analy-
sis. It concerns identifying the data types of registers and memory
values in a stripped executable (or object file). However, automated
and precise binary type inference is a hard problem [31, 67] due
to the lack of high-level abstractions and the rich variety and so-
phistication of compiler optimizations, hardware architectures, and
adversarial obfuscation methods [53].

A predominant use case of type information, and even more so
for binaries, is program understanding. Many important security
applications are interactive [55, 57]. For instance, a security analyst
uses an interactive disassembler (e.g., IDA [3] or Ghidra [2]) to
decipher semantic information from binaries (e.g., types of certain
variables). These tools may not infer all the required information
since the general problem is intractable. Consequently, the analyst
uses the tool’s information and their expertise to assist (e.g., provide
the type of a variable) or correct (e.g., change the type of a variable)
the tool’s output. The tool uses the newly provided information to
refine and improve the results. This interactive process continues
until the analyst is satisfied with the understanding gained from
the semantic information.

Exiting binary type inference solutions can be broadly classi-
fied into three categories: Rule- and heuristic-based solutions (e.g.,
type inference in IDA and Ghidra), constraint-solving-based solu-
tions (e.g., TIE [36], Retypd [42], and OSPREY [69]), and machine-
learning-based solutions (e.g., Debin [32], StateFormer [44], Type-
Miner [38], and DIRTY [12]). Our work is motivated by the fol-
lowing three challenges faced by the state of the art tools: (1) Low
accuracy in inferred types on stripped binaries. Even the best solution
only achieves an average F1 score of around 78% during evalua-
tion. (2) Limited architectural support. Many solutions, especially
heuristic-based and constraint-based ones, only support binaries
on one or a limited number of architectures because it is difficult

to generalize rules, heuristics, and constraint-solving methods to a
wide range of architectures. (3) Feedback-insensitive.While machine-
learning solutions generally offer higher accuracy, none of them can
incorporate type information that analysts provide during manual
reverse engineering (or hints from other tools), which significantly
hinders their applicability in interactive settings.

In this paper, we present Bityr, a machine-learning-based binary
type inference technique that aims at assisting security analysts
in interactive reverse engineering sessions with highly-accurate
inferred types for registers and memory locations. Bityr lifts binary
code into VEX IR [41], a uniform intermediate representation that
supports many architectures and abstracts away hardware-specific
details, runs a light-weight data-flow analysis on each function to
collect information about how each variable is accessed, generates
novel, graph-based representation of data-flow information, and
finally trains a model based on Graph Neural Networks (GNN) [48]
for type inference.

The use of VEX IR is instrumental to the performance of Bityr.
On the one hand, VEX IR allows Bityr to support a wide range
of architectures and easy to extend to new architectures [1, 6, 33].
On the other hand, VEX IR is suitable for performing data-flow
analysis, allowing Bityr to extract data-flow information that is
highly relevant for type inference.

To strike a balance between scalability and accuracy, Bityr em-
ploys a novel graph-based intra-procedural representation of the
data-flow information. Because the representation is constructed
on a per-function basis, Bityr scales to large, real-world binaries.
This representation is acceptable to GNNs, a deep neural network
model that is well-suited for predicting rich properties of graph-
structured data [60]. To the best of our knowledge, Bityr is the first
to demonstrate the effective application of GNNs to the problem of
binary type inference. Particularly, we demonstrate that they can
adequately tolerate missing inter-procedural information, thereby
allowing data-flow analysis to scale.

We implement Bityr using the angr binary analysis frame-
work [53] and evaluate it on a suite of 13,326 binaries ranging
over 33 open-source software projects compiled for four architec-
tures (x64, x86, ARM, and MIPS) with four optimization levels, O0,
O1, O2, and O3. On which Bityr achieves an overall type inference
precision of 92.3%, 90.7%, 80.1%, and 78.3%, respectively.

Contributions. This paper makes the following contributions:

• We propose a novel graph-based representation of data-flow
information that enables to synergistically combine a data-flow
analysis and a graph neural network model to balance scalability
and accuracy.

• We implement Bityr, a system that uses above GNN model
trained on a large dataset of non-stripped binaries to recover
types of high-level program variables from new, unseen stripped
binaries.

• We demonstrate the effectiveness of Bityr by extensively eval-
uating it on a large corpus of 13,326 binaries and show that it
achieves precision ranging 92.3% - 78.3%, significantly outper-
forming the state-of-the-art approaches.

In the spirit of open and reproducible science, we will open source
Bityr and all evaluation artifacts upon the acceptance of this paper.
For reviewing, we made an anonymized pre-release of the code
base of Bityr at https://anonymous.4open.science/r/bityr-review/.

2 BACKGROUND

Before diving into the technical details of Bityr, we will first present
necessary background knowledge for readers in this section, namely
binary reverse engineering, binary type inference, and GNN.

2.1 Binary Reverse Engineering

Binary reverse engineering is the process of understanding a pro-
gram without access or only having limited access to its source
code. Security analysts reverse engineer binaries to understand the
behaviors or provenance of malware [21, 64], discover vulnerabili-
ties in binaries [39], and mitigate defects in legacy software [51].
In most cases, debug symbols are not available to security analysts,
and they are forced to manually recover lost semantic informa-
tion, such as variable locations, names, and types, during reverse
engineering.

2.2 Type Inference on Binaries

Binary type inference is the automated process of reconstructing
source-level type information, e.g., types of local variables and
function arguments, from untyped byte-addressed memory and
registers. It is challenging because most information is discarded
during compiling unless debug symbols are preserved. As shown
in Table 1, exiting binary type inference solutions can be broadly
classified into three categories based on their core techniques: Rule-
and heuristic-based type inference solutions, constraint-solving
based solutions, and machine-learning-based solutions.

A key difference between these solutions is if they support type
inference of structs and struct members (or struct layouts). Inferring
struct members and their types requires complex and accurate
reasoning and fine-grained flow information [10], which is hard to
gain during static analysis. Most non-constraint-based inference
techniques (i.e., top and bottom column groups) do not predict
struct member types. Rewards [37] and Howard [54], which do
predict struct member types, use dynamic traces to get precise
offset information. However, as with any dynamic techniques, they
suffer from low completeness: Their only support assembly code
that is reachable during execution. Therefore, we make a design
decision for Bityr to not use dynamic traces and not infer struct
members. As wewill show in Section 6.2, Bityr outperforms existing
state-of-the-art binary type inference techniques.

2.3 Graph Neural Networks

Graph Neural Network (GNN) is a deep neural network architecture
that is well-suited for predicting rich properties of graph-structured
data [60], through a procedure called message passing. GNNs have
been used for many program understanding and analysis tasks, such

as identifying variable misuses in C# programs [5], localizing and
repairing bugs in JavaScript code [20], predicting types in Python
programs [4], and detecting code clones [61]. To the best of our
knowledge, Bityr is the first to demonstrate the effective application
of GNNs to the problem of binary type inference.

3 OVERVIEW

In this section, we set out by presenting the binary type infer-
ence problem. We then provide an overview of Bityr’s architecture,
highlighting key design choices that enable it to achieve the afore-
mentioned criteria.

3.1 Binary Type Inference

We consider the problem of mapping binary-level variables to
source-level types. Specifically, we focus on parameters and lo-
cal variables in functions, which are crucial for understanding the
behavior and intent of the function—and are thus of interest to
reverse engineering. We illustrate our objective with an example in
Figure 1, which shows a C function and its assembly code extracted
from the x64 binary compiled with GCC using optimization level
O0. In practice, only the binary is available, but inferring types for
data that directly correspond to source-level variables is helpful
for understanding the intent of the function, and perhaps even
extracting a faithful decompilation. At the binary level, local vari-
ables are typically stored at stack offsets. For instance, the stack
offset -0x30(%rbp) corresponds to name_len and -0x38(%rbp)
corresponds to ext_len.

Our goal is to predict fine-grained type information in the form
of C types such as int32, uint64, struct*, and char**, which are
familiar to users with experience in popular tools for interactively
reverse-engineering binaries such as IDA and Ghidra. In particular,
we treat type inference as a classification problem, meaning that
the variety of types we can predict is finite. While C types may
be arbitrarily complicated, we found that our finite subset is still
sufficiently expressive to cover nearly all cases that arise in practice.
We describe our type system in more detail in Section 4.3 and
document the frequency of types within our dataset in Section 5.

3.2 Architecture of Bityr

We next provide an overview of Bityr’s pipeline, which is shown
in Figure 2. We motivate the design decisions for each part of the
pipeline, and illustrate how they work together to yield an effective
framework for binary type inference.

Although the example binary discussed above for Figure 1 is
x64, a key goal of Bityr is architecture independence over the input
binary: Bityr should not only support a wide range of architectures,
but also be easily extensible to new ones. To achieve this objec-
tive, Bityr targets VEX IR [41], which is an architecture-agnostic
representation for a number of different target machine languages.
Moreover, VEX IR is designed to make program analysis easier,
which enables us to leverage off-the-shelf program analysis tools.
In particular, Bityr builds upon the angr binary analysis frame-
work [53] to obtain data-flow information, as described in Section 4.

Data-flow information is highly relevant for type inference. This
is evident in traditional constraint-based techniques wherein the
typing constraints essentially encode such information [10, 36, 42].

2

https://anonymous.4open.science/r/bityr-review/

Table 1: A qualitative comparison among existing binary type inference techniques. All techniques support inferencing prim-

itive types, which are omitted in this table. “Struct,” “Struct Ptrs,” and “Struct Members” refer to whether each technique can

automatically infer such information. IDA andGhidra only supportmanually specifying struct types to variables and perform

extremely limited automated type inference of structs. TypeMiner does not attempt to recover the complete struct layout or

types of all struct members. DIRTY only predicts types in its vocabulary, which means it does not support predicting structs

that did not appear in its training set.

Category Technique Input Complete-

ness

Struct Types Inference Support Multi-

arch.

Support

Rules and Heuristics

IDA [3] Binary High N/A ✓
Ghidra [2] Binary High N/A ✓

Rewards [37] Dyn. Traces Low Struct, Struct Ptrs, Struct Members ✗
Howard [54] Dyn. Traces Low Struct, Struct Ptrs, Struct Members ✗

Type Constraint Solving
TIE [36] Binary High Struct, Struct Ptrs, Struct Members ✗

Retypd [42] Binary High Struct, Struct Ptrs, Struct Members ✗
OSPREY [69] Binary High Struct, Struct Ptrs, Struct Members ✗

Machine Learning

Debin [32] Disassembly High Struct ✗
TypeMiner [38] Dyn. Traces Low Struct, Struct Ptrs ✗
StateFormer [44] Runtime Values High Struct, Struct Ptrs ✓

DIRTY [12] Decompilation High Struct, Struct Ptrs ✗
Bityr Binary High Struct, Struct Ptrs ✓

int file_has_ext(char* file_name , char* file_ext) {

char* ext = file_ext;

if (* file_name) {

while (*ext) {

int name_len = strlen(file_name);

int ext_len = strlen(ext);

if (name_len >= ext_len) {

char* a = file_name + name_len - ext_len;

char* b = ext;

while (*a && toupper (*a++) == toupper (*b++));

if (!*a) return 1;

}

ext += ext_len + 1;

}

}

return 0;

}

...

53: mov -0x30(%rbp),%eax

56: movslq %eax ,%rdx

59: mov -0x2c(%rbp),%eax

5c: cltq

5e: sub %rax ,%rdx

61: mov -0x38(%rbp),%rax

65: add %rdx ,%rax

68: mov %rax ,-0x20(%rbp)

6c: mov -0x28(%rbp),%rax

70: mov %rax ,-0x18(%rbp)

74: nop

...

-0x18 (%rbp): char*

-0x20 (%rbp): char*

-0x28 (%rbp): char*

-0x2c (%rbp): int32

-0x30 (%rbp): int32

-0x38 (%rbp): char*

-0x40 (%rbp): char*

Figure 1: Left: A C function that checks file extensions. Middle: The disassembly abstract of the function in compiled x64

binary. Right: Type predictions for variables at their corresponding stack offsets.

x64

x86

ARM

Graph
Neural

Network

t48 = LDle:I8(t45)

t63 = 8Uto32(t48)

t47 = t63

t64 = 32Uto64(t47)

t46 = t64

PUT(rax) = t46

Arch-Agnostic Vex IR Data-Flow Graphs Vector Embedding

Bityr

Binaries

Function 0x5fa:
 rbp-0x10: int
 rbp-0x14: struct*
 ...

Function 0x888:
 rbp-0x30: char*
 rbp-0x38: char*
 ...

Type Predictions

...
Plugins

Type Hints / Feedback

User

rdx

rcx rdx

sub

bp-8

rsi

rdx

rcx

bp-c

store

Type
Inferenceangr Data-Flow

Anaysis

Figure 2: Bityr’s pipeline. Binaries are first converted to VEX IR followed by data-flow analysis to yield a data-flow graph

for each function. Each such graph is then passed to a graph neural network which yields a continuous representation that

aims to capture the semantic information for its function. This representation is then used to predict a type for each variable

present.

However, these methods are often limited by the constraint-solving
step, which prevents them from effectively scaling to large binary

applications. An attractive work-around is to employmachine learn-
ing. Although binaries lack sophisticated abstractions, they are in

3

fact rich in patterns and conventions, making them amenable to
statistical data-driven methods. Bityr thereby uses a model to learn
the data-flow patterns in binaries and output typing predictions
accordingly.

To integrate classic data-flow analysis and modern machine
learning, we must design a representation for typing informa-
tion that is simultaneously easy to extract while being suitable
for machine learning. Our key insight is to design a graph-based
intra-procedural representation of data-flow information. First,
constraint-encoded data-flow information is also naturally modeled
through graphs, and in fact light-weight data-flow graphs are easy
and efficient to acquire using angr. Moreover, modern graph neu-
ral networks (GNNs) are remarkably well-suited to learning and
approximating the latent semantics of graph-structured data. This
motivates the central data structure of Bityr, which is an efficiently
constructed and information-rich graph that explicitly marks the
derivation, usage, and location of data-flow throughout program ex-
ecution. In short, we use angr to generate function-level data-flow
graphs that are fed to a graph neural network. The graph neural
network then generates a continuous embedding of the data-flow
graphs that approximate the underlying typing semantics.

Type inference is then cast as a classification problem [46], in
which we output from a range of finite C-level types. Although the
possible types are in principle arbitrarily many, we observe that
selecting a much smaller range of commonly seen types already en-
compasses a large portion of those that exist in the wild. Therefore,
rather than incorporating the full complexity of structured predic-
tion, the formulation of type inference as a classification problem
suffices for binaries.

Bityr’s output is a mapping of binary-level variables to their
respective C-level types. This is easily interpretable as this closely
matches the type systems of popular tools like IDA and Ghidra,
and is therefore also in a format that is easy to integrate with
existing analysis loops. Furthermore, feedback in the form of type
hints, provided by the user or another tool, can be used to refine
and improve typing prediction: if a variable type is known, this
amounts to simple feature engineering in the graph neural network.

4 METHODOLOGY

In this section we give a technical presentation of Bityr’s approach
to binary type inference as a machine learning problem. We first
present our choice to target VEX IR in order to achieve architecture
independence. Next, we describe our light-weight data-flow anal-
ysis procedure for generating information-rich data-flow graphs.
Then, we present the design and rationale of our graph neural net-
work architecture, as well as the distributed, vectorized embedding
that it outputs. Finally, we show how Bityr treats type inference as
a classification problem.

4.1 The VEX IR

Bityr first converts its input binaries into VEX IR via the angr
binary analysis framework [53]. By targeting an IR rather than a
specific architecture, Bityr accepts binaries that target a wide range
of hosts. In particular, we chose the VEX IR because it backs a wide
array of architectures, is designed with program analysis in mind,
and has existing tooling support [1, 35].

x86

x64

MIPS

5e: sub %rax, %rdx
61: mov -0x38(%rbp), %rax
65: add %rdx, %rax
68: mov %rax, -0x20(%rbp)

PPC, STM32, etc.

...
------ IMark(0x5e, 3, 0) ------
t2 = Sub64(t21, t28)
PUT(rdx) = t2
PUT(rip) = 0x0061
------ IMark(0x61, 4, 0) ------
t31 = Add64(t18, 0xffffffffffffffc8)
t33 = LDle:I64(t31)
------ IMark(0x65, 3, 0) ------
t6 = Add64(t33, t2)
PUT(rip) = 0x0068
------ IMark(0x68, 4, 0) ------
t34 = Add64(t18, 0xffffffffffffffe0)
STle(t34) = t6
PUT(rip) = 0x00006c
...

Binary
(under different architectures) VEX IR

Figure 3: Binary to VEX IR conversion for lines 0x5e - 0x68

of Figure 1. Note that all architecture-specific side effects

(e.g., changing rip in x64) are explicitly encoded in VEX IR.

As an example of this binary-to-VEX conversion, Figure 3 shows
how a few lines of x64 binary are converted into their correspond-
ing VEX snippet. VEX is a minimalistic IR in which the core se-
mantics center around register, memory, and temporary variable
read-writes. Temporary variables (t2, t6, etc) are indexed by non-
negative integers and are a VEX-specific convention to enforce that
valid VEX programs must be in static-single assignment form [17],
which is a significant simplifying assumption for many program
analysis techniques. Additionally, VEX encodes for operations such
as 32-bit arithmetic, bit-wise logic, and floating-point arithmetic,
whose semantics are appropriately implemented in angr.

4.2 Data-Flow Analysis

In this part we present how Bityr uses data-flow analysis to yield
graphs that capture the relevant information for type inference. As
an example, consider the function foo and its control-flow graph
shown in Figure 4. Depending on the parameter a, either path 𝑃1
or 𝑃2 will be taken, which will appropriately modify the values of
the two local stack variables b and p.

int foo(int a) {

int b = 0x123;

int *p = 0;

if (a != 0) {

p = &a;

} else {

b = 0x234;

p = &b;

}

}

 int b = 0x123;
 int *p = 0;
 if (a != 0)

p = &a;
 b = 0x234;
 p = &b;

Path P2Path P1

BB1

BB2 BB3

Figure 4: Example for illustrating our data-flow analysis.

(Left) A simple functionwith two possible paths. (Right) The

control-flow graph of the function.

Our objective is to infer the types of a, b and p, and to do this we
aim to generate information-rich data-flow graphs such as those
in Figure 5. These graphs are intended to convey how variables
derive and use data during execution, and aim to capture sufficient

4

MemWrite0x123
Value

Addr

RegID

0x30 0x7fff0000

0xffffffe0

0x7ffeffe0

Op1 Op2

Add

Value

RegWrite

RegRead

ebp <- 0x7fff0000

addr <- rbp + (-0x18)

rbp

-0x18

b = 0x123

b

RegID

0x30 0x7fff0000

RegWrite

RegRead

rbp

0xffffffd4 0xffffffe8

0x7ffeffd4 0x7ffeffe8

RegWrite

RegRead

0x10

MemWrite

Value

Add

Op2 Op2Op1 Op1

RegID

Value

Value

Addr

Add
p a

p = &a

rax

MemWrite0x234
Value

Addr

RegID

0x30 0x7fff0000

0xffffffe0

0x7ffeffe0

Op1 Op2

Add

Value

RegWrite

RegRead

rbp

-0x18

b = 0x234

RegID

0x30 0x7fff0000

RegWrite

RegRead

rbp

0xffffffe0 0xffffffe8

0x7ffeffe0 0x7ffeffe8

RegWrite

RegRead

0x10

MemWrite

Value

Add

Op2 Op2Op1 Op1

RegID

Value

Value

Addr

Add

p = &b

rax

-0x18

-0x10 -0x24

-0x24

Path P1

Path P2

Merged Data-Flow Graph

b

RegID

0x30 0x7fff0000

RegWrite

RegRead

0xffffffe0

0xffffffe8

0x7ffeffe0 0x7ffeffe8

Value

Add

Op2

Op2Op1 Op1

Add

0xffffffd4

0x7ffeffd4Add

Op1
Op2

0x10

RegWrite

RegRead

RegWrite

RegRead

MemWrite

MemWrite

MemWriteMemWrite

0x123 0x234

Addr Addr

Value

Value

RegID

Value

Value

Addr

Addr

ValueValue

rax p = &a

p = &b

b = 0x123 b = 0x234

b
a p

-0x24

-0x18

-0x10

Immediate
Operand

Computed
Value

Corresponding
Source Line

Constant Value Operation

Figure 5: Data-flow graphs for the function foo in Figure 4. (Left-Top) variable-level data-flow graphs for b and p along 𝑃1.
(Left-Bottom) variable-level data-flow graphs for b and p along 𝑃2. Note that because bwas over-written, it has the value 0x234
rather than 0x123. (Right) aggregation of all data-flow graphs. Above is a simplified view; data-flow graphs track the operands,

operators, bitsizes, and locations of data derivation and usage.

information for a GNN to perform accurate type inference. The
choice to target data-flow information is not arbitrary, and is in
fact inspired by classical constraint-based type inference schemes,
wherein constraints effectively encode these data-flow properties.
As a high-level overview, our strategy for data-flow analysis is
two-part, as follows:

1. Perform program execution along different non-cyclic paths
in the function’s control-flow graph to generate a data-
flow graph for each variable along each path. Each path is
then associated with a collection of variable-level data-flow
graphs (Figure 5, left).

2. Aggregate the variable-level data-flow graphs of each path
together into one big function-level data-flow graph (Fig-
ure 5, right). This in turn is passed to the graph neural
network stage of Bityr’s pipeline.

In the remainder of this part, we first discuss the relevant details
and features of program execution in angr. Then, we show how
these features are used over a single function in order to derive a
state cache. Finally, we show how this state cache is used to extract
variable-level data-flow graphs at the final state of each path, which
are then aggregated into a single function-level data-flow graph.

4.2.1 Program Execution in angr. Because we use angr’s exe-
cution engine to track data-flow facts, it is important to understand
some of its core mechanics. First, angr’s execution engine works at
the granularity of bitvectors, and has the ability to track bitvector ex-
pressions throughout program execution. Execution centers around

modifying a state, which maps locations to bitvector expressions,
or more formally:

state : loc → bvexpr, loc := reg | bvexpr

where loc may be a register (e.g. rax, rbx) or a bitvector expression
for an address (e.g. rbp - 0x20).

As a concrete example, we consider executing a sequence of
VEX instructions corresponding to the x64 assembly add %rax,
-0x20(%rbp), with the execution trace shown in Figure 6.

VEX IR Statement State Properties

st0[rbp] == w

st0 st0[rax] == y

t0 = Get(rbp) st1 t0 == w

t1 = Sub64(t0, 0x20) st2 t1 == w - 0x20

t2 = Load32(t1) st3 t2 == st2[w - 0x20]

t3 = Get(rax) st4 t3 == y

t4 = Add64(t2, t3) st5 t4 == st2[w - 0x20] + y

Store(t1) = t4 st6 st6[w - 0x20]

== st2[w - 0x20] + y

Figure 6: An example of execution in angr. Temporary vari-

ables are given by t0, t1, etc. and are in SSA form. (Left) The

VEX instructions corresponding to add %rax, -0x20(%rbp).
(Middle) The states induced by each successive instruction,

i.e. st4 == st3.step(t3 = Get(rax)). (Right) The relevant

properties of each state.

5

We assume that the initial state st0 has registers rbp and rax
registers containing the bitvectors w and y, respectively. Executing
this sequence of instructions ultimately stores a bitvector expres-
sion st2[w - 0x20] + y at the memory address w - 0x20, which
is itself a bitvector expression.

Bitvector expressions are useful because their syntactic structure
documents the derivation process of the resulting value, in particu-
lar allowing us to inspect what operators were used. In addition,
angr allows arbitrary Python objects to annotate the nodes of a
bitvector expression tree, meaning that we can easily track where
data is loaded from and written to—this is especially helpful when
attempting to align data with DWARF [15] debug information.

4.2.2 Exploring the Control-Flow Graph. We now discuss our
strategy for using angr’s execution on the control-flow graph
in order to generate data-flow graphs. The high-level idea is to
execute along different path of the control-flow graph and then, by
inspecting the read-from and written-to locations of each respective
state, we can extract variable-level data-flow graphs that provide
the derivation of a particular bitvector expression at a particular
location. Because our objective is to perform intra-procedural data-
flow analysis, we need a careful strategywhen exploring the control-
flow graph in order to efficiently achieve good coverage.

One key insight is that it suffices to evaluate the basic block at
each node only once. This is because within a basic block the same
sequence of instructions will always be run regardless of how (i.e.,
path) the execution reaches it, and we want to capture the flow
of data through a basic block without considering how execution
reaches the basic block.

In addition, we may completely disregard path feasibility. This is
because we are interested in how data may be used on both sides of
a conditional branch. Even if a particular path is not feasible, any
usage of program variables is still valuable information for type
inference.

Our technique is shown in Algorithm 1. The idea is to execute
the basic blocks in a particular sequence where initialization before
each call to execOneBlock is determined by a state cache, which
is a mapping of node → state. This cache is important because it
stores the final states of all the basic blocks that we have explored,
meaning that the read-from or written-to locations of each of its
states contains information rich bitvector expressions, which we
later use to derive variable-level data-flow graphs.

Our particular sequence of node execution is determined using
notions of pre- and post-dominance [17] on the control-flow graph.
In particular, we define a partial order on the nodes depending on
which nodes must precede each other. As angr ensures that all
functions have a unique entry block, this node ordering scheme
within worklist ensures that we never cache miss when calling
initState. In addition, because who explores a block is irrelevant,
any final state of an explored predecessor suffices for initialization.

The sequence of nodes visited by Algorithm 1 induces a set of
simple paths. The final state of each execution path correspond to
the states in the cache which were not used to for initialization.
As a consequence, this means that each final state has traversed a
basic block that no other final state has.

4.2.3 Data-Flow Graphs. We derive data-flow graphs from the
set of final states in the state cache.

Algorithm 1: Execution of a single function.
Input: The function’s entry node and a worklist of nodes to

explore in sequence
Output: A populated cache : node→ state

1 Function execOneBlock(state, node)
2 for instr ∈ node.block.instructions do
3 state← state.step(instr)
4 return state

5 Function initState(node, cache)
6 if there is a CFG predecessor pred of node such that

pred ≠ node and pred ∈ cache then
7 state0 ← cache[pred]
8 state0 [ip ↦→ node.addr]
9 return state0, cache

10 return ⊥, cache

11 state0 ← freshZeroState()
12 state0 [ip ↦→ entry.addr, ip ↦→ HIGH_ADDR]
13 state𝑓 ← execOneBlock(state0, entry)
14 cache[entry ↦→ state𝑓]

15 for node ∈ worklist do
16 state0, cache← initState(node, cache)
17 if state0 ≠ ⊥ then

18 state𝑓 ← execOneBlock(state0, node)
19 cache[node ↦→ state𝑓]

By examining the read-from or written-to locations of each
path’s final state, we obtain a set of bitvector expressions that are
used to derive the variable-level data-flow graphs shown in Figure 5
(left). The nodes of these data-flow graphs are indexed by angr’s
immutable bitvector expressions, and correspond to either immedi-
ate operands (e.g., constants, register offsets) that are the argument
to some operation, or the computed value (e.g., to-be-written values)
that result from said operation. Operations include categories such
as 32-bit addition and memory-write, and together with incoming
edge labels denote how a particular node—which corresponds to a
bitvector expression—is derived.

The variable-level data-flow graphs describe only how a par-
ticular bitvector expression at a particular location in a particular
path’s final state is derived. Individually, they do not convey how a
variable’s data, or even partially-derived values, are used by other
variables throughout the function. Indeed, different variable-level
data-flow graphs may share identical sub-graphs, and inter-variable
data-flow gives additional hints about what a bitvector expression’s
type might be. This motivates aggregating all the variable-level
data-flow graphs into a single function-level data-flow graph, as
shown in Figure 5 (right). Since we use angr’s bitvector expressions
to index nodes, this is simply a graph union.

6

0x30 0x7fff0000

RegWrite

RegRead 0xffffffe0

0x7ffeffe0

MemWrite

0x123

MemAddr

Add

RegData

MemData

Add

RegRead

RegID

Size Features Register Features Value Features

Message
Passing
(GNN)

Type
Prediction

Data-Flow Graph

Add Add

MemAddrMemData

RegID RegData

...

Type Hint
(Adaptive Type Inference)

...

i8
i16
i32
i64
u8
u16
u32
u64

f64*
struct*
enum*
union*
array*
void*

Initial Node
Embedding

Predicted
Type

Figure 7: Architecture of graph neural network in Bityr. The data-flow graph (left) is converted into the vector representation

(middle). The nodes in the data-flow graph is transformed into node embedding using Node Embedding Initialization. The

directed edges are augmented to allow message passing on both forward and backward directions. After message passing, the

node embedding is passed to the type prediction layer to produce the type vector (right).

4.3 Type Inference with Graph Neural

Networks

Given a graph 𝐺 = (𝑉 , 𝐸) that contains a set of nodes 𝑉 and edges
𝐸, a graph neural network (GNN) 𝑓 in our context would embed the
graph into a set of vectors (or embeddings), i.e., 𝑓 (𝐺) : G ↦→ R |𝑉 |×𝑑 .
Here G represents the space of the graphs, while 𝑑 specifies the
dimensionality of the embedding per each node. As shown in Figure
7, the GNN encodes the graph in an iterative fashion, where each
iteration or layer of GNN propagates the information from nodes to
their direct neighbors. We next elaborate the specific design choices
of 𝑓 .

Node Embedding Initialization. The first layer of the GNN starts
with the initial embedding representation of each node ℎ (0)𝑣 ,∀𝑣 ∈ 𝑉 .
In our setting, we represent the node with the following simple
features (Figure 7):

• Bitvector size: one-hot encoding of the size of the node bitvector
value, from the set of possible sizes {1, 8, 16, 32, 64, 128, others}.
Note that it is possible to have an irregular sized bitvector, usually
due to SHIFT operations. In such cases, we use the encoding for
others.

• 5 register related features, including is_register, is_arg_register,
and is_ret_register.

• 11 value features related to the concrete node value, such as
is_bool, is_float, close_to_stack_pointer, is_zero, is_negative, and
is_one.

We denote the above features as 𝑥𝑣 ∈ R𝐷 where 𝐷 is the dimension
of the features. Then, the initial embedding is ℎ (0)𝑣 = 𝑊0𝑥𝑣 + 𝑏0
where𝑊0 ∈ R𝑑×𝐷 and 𝑏0 ∈ R𝑑 are learnable parameters.

Edge Type. In our setting, each edge 𝑒 ∈ 𝐸 is a triplet 𝑒 = (𝑢, 𝑟, 𝑣)
that represents a directional edge of type 𝑟 from node 𝑢 to 𝑣 . The
type of the edge represents the data-flow, control-flow, and other

operational meanings in pre-defined types R. Note that for a GNN
to function properly, one would need to create a backward edge for
any forward edge in the original data-flow graph. The backward
edge type must be different than the forward edge type. Therefore
for any edge type 𝑟 , we have an edge type rev(𝑟) ∈ R representing
its backward edge type. As the total number of possible types |R |
is known beforehand, we can design the message passing operator
based on the edge types, as described next.

Message Passing Layer. Each layer of the GNN 𝑓 performs a
“message passing” operation that propagates the information from
the nodes to their direct neighbors. We denote the embedding of
node 𝑣 at layer 𝑙 as ℎ (𝑙)𝑣 , with the boundary case of ℎ (0)𝑣 defined
above, and the update formula defined recursively as follows:

ℎ
(𝑙)
𝑣 = 𝜎

(
AGGREGATE({𝑔(ℎ (𝑙−1)𝑢 , 𝑟 , ℎ

(𝑙−1)
𝑣)}𝑒=(𝑢,𝑟,𝑣) ∈N𝑣

)
)

(1)

Here 𝜎 is an activation function such as ReLU or Sigmoid. AGGRE-
-GATE is a pooling function that aggregates the set of embeddings
into a single vector.N𝑣 denotes all incoming edges to node 𝑣 , while
the function 𝑔(𝑢, 𝑟, 𝑣) is the message function that produces an
embedding.We adopt the design choice fromRGCN [49], and realize
Eq 1 as follows:

ℎ
(𝑙)
𝑣 = ReLU

(∑
𝑟 ∈R

MEAN({𝑊 (𝑙)𝑟 ℎ
(𝑙−1)
𝑢 +𝑊 (𝑙)0 ℎ

(𝑙−1)
𝑣 }𝑒∈N𝑟

𝑣
)
)

(2)

where𝑊 (𝑙)𝑟 ∈ R𝑑×𝑑 are weights that depend on layer index 𝑙 and
edge type 𝑟 , and𝑊 (𝑙)0 ∈ R𝑑×𝑑 . N𝑟

𝑣 ⊆ N𝑣 denotes the incoming
edges to node 𝑣 with edge type 𝑟 .

After 𝐿 layers, we use the output of the last layer as the vector
representation for each node, ℎ𝑣 = ℎ𝐿𝑣 , and this vector is used for
label prediction, as described next.

Type Prediction. After obtaining the embedding ℎ𝑣 for a partic-
ular node 𝑣 , we use a multi-layer perceptron (MLP) to classify ℎ𝑣

7

into the node label, which is the type corresponding to the node.
Given a set of types 𝑇 , our type prediction layer produces a vector
𝑡𝑣 ∈ R |𝑇 | for the node 𝑣 , as shown as the right most vector in Figure
7. During training, our predicted type vector 𝑡𝑣 is then compared
with the ground truth type vector 𝑡𝑣 ∈ R |𝑇 | , the one-hot encoding
of the ground truth type under the set of types 𝑇 . In this work, we
apply cross entropy loss function

L(𝑦,𝑦) = −
∑
𝑖

𝑦𝑖 log(𝑦𝑖) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖)

to compute the loss 𝑙 = L(𝑡𝑣, 𝑡𝑣). The loss 𝑙 is then back-propagated
to update the learnable parameters. During testing and prediction
phases, on the other hand, we apply argmax on 𝑡𝑣 to obtain the
type that is predicted to have the highest probability. Note that we
predict types for all nodes in the graph. During both training and
testing phases, since we are aware of the mapping from source-
level variables to graph nodes, we only compare to ground truth
the predicted types of the nodes that correspond to source-level
variables.

5 IMPLEMENTATION AND SETUP

Bityr comprises 7k lines of Python code. The data-flow analysis
module is based on the angr framework [53]. The learning module
is written using PyTorch Geometric library of PyTorch 1.8.1. All
the experiments are run on a Linux server with Ubuntu 20.04, Intel
Xeon Gold 5218 at 2.30GHz with 64 cores, 251GB of RAM, and two
NVIDIA GeForce RTX 3090-Ti GPUs.

Dataset. We use the set of 33 programs provided by State-
Former [44] as our binary dataset. The dataset contains well-known
projects like coreutils, openssl, and sqlite, cross-compiled into
4 architectures (x64, x86, ARM, and MIPS) and 4 optimization lev-
els (O0, O1, O2, and O3). Our data generation pipeline takes in
non-stripped binaries in this binary dataset and performs data-flow
analysis on each function to obtain data-flow graphs. Using DWARF
information, we label graph nodes that correspond to source-level
variables with their actual source-level types. We omitted a few bi-
naries and functions from the original StateFormer dataset for the
following reasons. (i) Due to higher optimization levels abstracting
away variable definitions, our data generation pipeline might not
detect all source-level variables, resulting in discrepancies in the
number of such variables – we omitted those functions. (ii) We also
omit functions for which no local variables are detected and bina-
ries and functions on which angr failed. Table 2 provides detailed
statistics across all four architectures. We apply an 8:1:1 training,
validation, and testing split for each architecture-optimization com-
bination.

Typing Statistics. While a program may in principle contain in-
finitely many types, we found that in practice a handful of types are
significantly over-represented. Figure 8 shows a breakdown of the
type composition for stack variables found in the DWARF debug in-
formation of our dataset. In particular, types such as struct pointers,
u64, char*, i32, and u32 are relatively common. The statisics sug-
gest that it is practical for a machine learning approach to treat type
inference as classification rather than structured prediction. Indeed,
our choice of output types, as shown in Figure 9, precisely covers
97.1% of all observed types in the dataset. For the types that are not

Arch. Opt. Level # Binaries # Functions # Variables

x64

O0 1,088 226,055 937,174
O1 1,019 202,220 799,132
O2 997 204,056 816,838
O3 994 203,091 813,677

x86

O0 1,044 182,243 708,040
O1 1,036 176,415 647,490
O2 1,063 176,441 659,920
O3 1,062 175,351 655,734

ARM

O0 633 76,141 361,296
O1 633 41,548 159,568
O2 630 40,123 163,752
O3 628 39,911 168,525

MIPS

O0 620 56,584 266,596
O1 624 26,356 102,151
O2 628 25,798 104,515
O3 627 25,724 108,278
Table 2: Statistics of our dataset.

Figure 8: Breakdown of types in our dataset.

base type ::= i8 | i16 | i32 | i64 | i128 |
u8 | u16 | u32 | u64 | u128 |
bool | char |
struct | union | enum | array

output type ::= base type | base type* | base type** | void*

Figure 9: Description of output types.

exactly matching any type in our output domain, we simplify it to
the closest type. For example, struct*** is casted into void*.

Learning. In all our experiments, we use the Adam optimizer
with initial learning rate 10−3 and batch size 32. We train our model
end-to-end with 50 epochs and pick the model with the lowest vali-
dation loss. We use ReLU as the activation function during message
passing and the type prediction. Finally, our GNN is configured to

8

Arch. Opt. Level Precision Recall F1 score

x64

O0 91.5 91.0 91.3
O1 93.4 93.1 93.2
O2 92.1 91.8 91.9
O3 92.0 91.7 91.9

x86

O0 89.7 89.1 89.4
O1 91.6 91.3 91.4
O2 90.6 90.2 90.4
O3 90.7 90.4 90.5

ARM

O0 85.5 85.0 85.3
O1 79.2 78.4 78.8
O2 77.2 76.5 76.9
O3 78.3 77.4 77.9

MIPS

O0 80.5 79.9 80.2
O1 76.8 76.2 76.5
O2 79.4 78.8 79.1
O3 76.4 76.0 76.2

Table 3: Bityr’s precision, recall, F1 score results for each ar-

chitecture and optimization.

have eight (𝐿 = 8) message passing layers, with latent dimension
𝑑 = 64.

6 EVALUATION

Our evaluation aims to investigate the effectiveness of our approach
by answering the following questions:

RQ1 How accurate is Bityr’s type inference on real-world binaries?

RQ2 How does Bityr compare to existing binary type inference
techniques?

RQ3 How much does accurate data-flow information improve the
performance of Bityr?

RQ4 How efficient is Bityr’s type inference engine?

6.1 RQ1: Type Inference Accuracy of Bityr

We first investigate the performance of Bityr on various architec-
tures and optimization levels. For each architecture, we first trained
on all the available data (e.g. x64-OAll) before testing on individual
optimization levels (e.g. x64-O1). Table 3 shows the precision, recall,
and F1 scores. Bityr achieves average F1 scores of 92.1% on x64,
90.4% on x86, 79.7% on ARM, and 78.0% on MIPS. The F1 scores on
ARM and MIPS are lower than those on x64 and x86. We believe
that this gap is due to different numbers of functions in training sets
for each architecture. As shown in Table 2, there are significantly
more binaries and functions in x64 and x86 than in ARM and MIPS
in the dataset. We also perform a manual inspection of a randomly
sampled set of generated data-flow graphs for each architecture,
and find that they are similar. This means more data is very likely to
improve the performance of Bityr on ARM and MIPS binaries. We
verify this experimentally and provide the details in Appendix A.1.

Figure 10: Inference precision for arm O0.

6.1.1 Accuracy across Types. Here, we present the accuracy
of Bityr w.r.t types, specifically, how the accuracy varies across
different types. Figure 10 provides detailed inference results for
ARM-O0. As expected, the accuracy positively correlates with the
size, i.e., the number of occurrences (Figure 8), of the corresponding
type in the dataset. For instance, the precision for struct* is 0.88,
and it represents 25.8% of the entire dataset. However, an intrigu-
ing observation is that although bool (boolean) type occupies a
very small portion of the dataset, 3.5% in this case, it achieves high
precision. This is because boolean variables are usually as flags for
branches, and consequently, the same bool variable may occur mul-
tiple times for different program paths. This results in more than
twice the number of location nodes and edges, such as RegRead
node and Value edge in Figure 5, with respect to other variable
nodes. Furthermore, these bool nodes are found to be connected to
a greater number of edges with labels related to comparison opera-
tions such as __eq__. The trend is the same for other architectures
and optimization combinations. We present the complete results in
Table 7 in Appendix.

6.2 RQ2: Comparison Against Baselines

There are a number of published techniques that focus on binary
type inference, such as TIE [36], TypeMiner [38], and Retypd [42].
Unfortunately, many of them are not publicly available. We com-
pare against the performance of several most recent techniques
that are publicly accessible: Dirty [12], StateFormer [44] , which
use transformer neural network for type inference; Debin, which
uses probabilistic decision trees; and OSPrey [69], which uses a
probabilistic type constraint solving for type recovery. We omit
comparisons against commercial tools (Ghidra and IDA) because
OSPrey outperforms both of them.

6.2.1 Comparison with Debin and StateFormer. We run Bityr
directly on the dataset provided by StateFormer and derive results

9

Arch. Opt. Bityr StateFormer Debin

x64

O0 91.3 (+9.9) 81.4

73.8
O1 93.2 (+18.3) 74.9
O2 91.9 (+21.8) 70.1
O3 91.9 (+20.6) 71.3

x86

O0 89.4 (+4.9) 84.5

63.7
O1 91.4 (+19.8) 71.6
O2 90.4 (+17.6) 72.8
O3 90.5 (+8.9) 81.6

ARM

O0 85.3 (+7.2) 78.1

67.4
O1 78.8 (+1.7) 77.1
O2 76.9 (+1.5) 75.4
O3 77.9 (-12.5) 90.4

MIPS

O0 80.2 (-15.0) 95.2

—
O1 76.5 (+0.8) 75.7
O2 79.1 (+5.7) 73.4
O3 76.2 (+0.4) 75.8

Table 4: Comparison on F1 scores among Debin [32, Table 3],

StateFormer [44, Table 2], and Bityr. Both StateFormer

andBityr are evaluated on the samedata set, while theDebin

results were reported by their authors on their own data set.

for comparison with Stateformer. Debin takes stripped binaries as
input and outputs binaries augmented with DWARF debug informa-
tion. However,Debin performs both type inference and source-level
variable recovery, which means that the amount of variable-type
pairs present was often small. We could not run Debin to only
conduct type inference. Hence, we directly take the numbers re-
ported by Debin [32, Table 3]. For StateFormer, we also directly
compared Bityr with the results in their paper because we are using
the same dataset. Both Debin and StateFormer use precision (𝑃),
recall (𝑅), and 𝐹1, where

𝑃 =
TP

TP + FP , 𝑅 =
TP

TP + FN , 𝐹1 =
2 · 𝑃 · 𝑅
𝑃 + 𝑅

and TP, FP, and FN denote true-positive, false-positive, and false-
negative respectively. We follow the same metric for comparison
purposes. As 𝐹1 is a mixture of precision and recall, we chose to
compare 𝐹1 scores among Bityr, Debin and StateFormer. We are
also use micro-averages for F1 scores, as all prior work like is using
this metric and the result is showed in Table 4.

StateFormer achieves an average 78.1% F1 score across all ar-
chitecture, optimization while Bityr achieves an average 85.1% F1
score and outperforms StateFormer by 7.0%. To be noticed, State-
Former does not predict double pointer type, while Bityr is capable
of predicting it.

Debin is evaluated on a private dataset that includes x64, x86,
and ARM binaries, but not MIPS. Since their evaluation does not
distinguish between different optimization levels, we group them
together in our comparison. Moreover, Debin predicts a strictly
smaller set of types than Bityr. It does not differentiate among

O0 O1 O2 O3
0

20

40

60

80

100

60.9 57.2 60.5 59.3

91 93.1 91.8 91.7

O
ve
ra
ll
A
cc
ur
ac
y
(%
)

Dirty Bityr

Figure 11: Overall accuracy of Bityr and Dirty on the State-
Former x64 dataset.

O0 O1 O2 O3
0

20

40

60

80

100

72.6 71.3 74.4 73.7

93.9 94.9 93.9 94

St
ru
ct
A
cc
ur
ac
y
(%
)

Dirty Bityr

Figure 12: Accuracy of predicting struct types for Bityr

and Dirty on the StateFormer x64 dataset.

pointer types: Pointers to structs (struct*) and pointers to chars
(char*) are uniformly labeled as pointer.

StateFormer is evaluated on the same binaries as Bityr, but
employs a different method for identifying binary-level variables.
In particular, StateFormer considers every token in a stream of
assembly as candidate for type inference—it is the model’s job to
predict that certain instructions, such as nop have the sentinel type
of no-access. This level of granularity means that there is significant
redundancy in how StateFormer counts variables [44, Table 1],
and also means that many of StateFormer’s type predictions are
not useful for an end-user without additional post-processing. Addi-
tionally, at StateFormer’s token-level granularity many types can
be known from local instructions, e.g., it should be clear that one of
the operands to the ARM instruction ldr is a pointer. Furthermore,
because StateFormer relies on a neural architecture to learn the
semantics of program execution, it is not clear that StateFormer
can accurately track long-range data and typing-dependencies.

6.2.2 Comparison with Dirty and OSPrey. To ensure a fair
evaluation, we only compare against those configurations that are
used in the evaluation of the corresponding tools. Dirty is trained
only on x64 binaries, hence we only test Dirty on x64 binaries

10

Overall Acc Struct Acc
0

20

40

60

80

100

75.3

43

77.9 79.1

90.9 95.5

A
cc
ur
ac
y
(%
)

OSPrey Dirty Bityr

Figure 13: Accuracy results on GNU coreutils O0 executables

from StateFormer dataset. Since Dirty can predict up to 48,888
different types, we convert its predictions in a post-hoc manner
to make it comparable with Bityr. For example, Dirty predicts
struct’s inner types, but Bityr does not; therefore, the structure type
struct S{int x; float y;} is converted to struct. Also,Dirty
is evaluated by accuracy, which we compare against Bityr’s accu-
racy. Figure 11 shows the overall type prediction accuracy of Dirty
in comparison with Bityr. Figure 12 shows the accuracy for predict-
ing only struct types. These results show that Bityr identifies types
with ∼30% higher accuracy. Even for struct types (for which Dirty
is specialized), Bityr outperforms Dirty by over 20%.

The implementation of OSPrey is not publicly accessible. How-
ever, the authors of the paper provided results of OSPrey on O0
binaries of GNU Coreutils. We removed Coreutils functions that are
part of Bityr’s training set to ensure a fair comparison, as including
these functions might inflate Bityr’s results. As Dirty was com-
pared againstOSPrey, we also evaluatedDirty on the same dataset
(Coreutils O0 binaries). BecauseOSPrey only predicts several primi-
tive and complex types, we convert bothDirty and Bityr’s predicted
types in a post-hoc manner to have comparable results. Specifically,
type names and field names are discarded. For example, bool and
char are both converted to Primitive_1, which stands for a prim-
itive type occupying 1 byte of memory, and const char * and
char * are converted to Pointer. Because Bityr does not predict
types for members of structs, we also discarded such information
from OSPrey and treated related types as struct type.

Figure 13 shows the the accuracy of both overall types and only
struct types for all three tools. Bityr outperforms both OSPrey and
Dirty. Specifically, Bityr is 15.6% more accurate than OSPrey in
terms of overall type prediction, and more than 50.0%more accurate
when predicting struct types. In conclusion, our results show that
Bityr is more effective than the state-of-the-art machine-learning
type inference techniques by outperforming them by a considerable
margin.

6.3 RQ3: Impact of Accurate Data-Flow

Information

To demonstrate the importance of using accurate data-flow infor-
mation, we evaluated a version of Bityr that used a basic reach-def

X64 X86 ARM

Syntactic (Top-3) 72.3 (88.6) 71.6 (87.5) 34.6 (59.3)
Accurate (Top-3) 77.2 (92.8) 77.1 (91.6) 66.1 (88.5)

Δ (Top-3) +4.9 (+4.2) +5.5 (+4.1) +31.5 (+29.2)
Table 5: The impact of accurate data-flow analysis (Accurate)

and light-weight syntactic data-flow analysis (Syntactic) on

the accuracy of type inference (both top-1 and top-3 accu-

racy). Note that this experiment was performed on a smaller

subset of GNU Coreutils binaries, hence the difference be-

tween numbers reported here and the ones reported in Ta-

ble 3.

O0 O1 O2 O3
0

1

2

3

4

5 ·10
−2

Se
co
nd

s

x64 x86 arm mips

Figure 14: Inference speed per function

graph of VEX IR registers, which can be considered as syntactic
flow representation. Note that, unlike our data-flow graph, this
simple syntactic representation did not track memory dependen-
cies. We evaluated the syntactic version of Bityr with the accurate
data-flow version on a small percentage of the dataset and on X64,
X86, and ARM architectures. Table 5 shows the results. As expected,
the syntactic version of Bityr (without memory dependencies) per-
formed poorly on RISC architectures (e.g., ARM) that make heavy
use of loads, stores, and data moving between registers and mem-
ory. The results clearly demonstrate the necessity of using accurate
data-flow information for accurate type inference on binary code.

6.4 RQ4: Efficiency of Bityr

In this section, we measure the inference performance of Bityr.
Specifically, wemeasure each function’s inference time andmemory
consumption, and the average numbers for each architecture are
shown in Figure 14 and 15, respectively.

6.4.1 Inference Time. The inference time per function is rea-
sonable and ranges from 1.5 - 4.5 seconds. The average inference
time (Figure 14) follows a similar trend for all architectures, i.e.,
slightly higher for O0, whereas similar for all other optimization
levels. This is because O0 binaries (i.e., without optimization) have
more variables than in higher optimization levels as the variables

11

O0 O1 O2 O3
0

0.5

1

1.5

2

2.5

3

M
B

x64 x86 arm mips

Figure 15: Inference memory cost per function

get optimized out. It is interesting to see that the average time for
ARM is slightly higher than for other architectures. This is because
our variable inference identified more variables than necessary and
consequently performed more work than necessary by predicting
types for non-existent variables. Nonetheless, the absolute time is
relatively less at 4.5 seconds.

6.4.2 Memory Consumption during Inference. The Figure 15
shows the average memory consumption across all architectures.
As expected, it follows a similar trend as the inference time. It is
interesting to note that memory consumption is higher for RISC
architectures, i.e., ARM and MIPS, compared to CISC architectures,
i.e., x86 and x64. This is because of the additional load and store
instructions in RISC, leading to more nodes in the data-flow graph
and, consequently, higher memory consumption. Similar to infer-
ence time, the absolute memory consumption is reasonable at 2
MB.

Project # Variables

Runtime(CPU)

Bityr Stateformer Debin Ghidra

ImageMagic 23727 208 187.8 N/A* 664.3
PuTTY 22429 143 146 5239.8 514.2
Findutils 6534 43 23.7 849 83.3

zlib 730 6 3.3 119 11.7
*Debin terminates abruptly after running one of the binaries for 138 minutes.
Table 6: Execution time onCPU (in seconds) of Bityr, STATE-

FORMER, Debin, and Ghidra on 4 software projects with dif-

ferent number of varibles.

We present the inference time on four software projects in com-
parison with StateFormer, Debin and Ghidra in Table 6. We
chose these projects as they were used to measure the inference
time in StateFormer. Bityr performs in par with StateFormer
with slight difference. This shows that Bityr achieves higher preci-
sion with the same inference time.

6.4.3 Bityr Graph Building (or Training) Time. We also mea-
sured the time it takes to build data flow graphs necessary for

training. Figure 16 shows a scatter plot of graph-building time on
x64 Coreutils O0 binaries against functions according to the num-
ber of variables. A detailed distribution of graph-building time is
presented in Appendix 17. It takes less than ten sections for 80.42%
of functions and 93.37% of functions complete within 30 seconds.
For most cases, as expected, the graph build time is proportional
to the number of variables. However, there are some cases where
this is not the case. For instance, it took 400 seconds to build the
data flow graph for a complex function with few variables. This is
because the graph-building time also depends on the complexity of
the dataflows (e.g., nested loops and conditionals).

The trend is the same across other architectures and compilation
options.

Figure 16: Graph building speed for x64 Coreutils O0.

7 DISCUSSION

Our experiments demonstrate that using graph neural networks to
learn and apply data-flow patterns for type inference is competi-
tive with other machine learning approaches as well as industry-
standard tools like IDA. We now discuss the main limitations of
Bityr and how to overcome or mitigate them.
• Choice of Program Variables. Bityr focuses on predicting the types

of local variables of functions. It is easy to extend our implemen-
tation to handle global variables in a similar manner. In particular,
it necessitates combining data-flow graphs from different func-
tions that use the global variable.

• Choice of Type Information. Bityr assigns one of a finite number of
types to each program variable. In particular, it does not support
rich compound types; for instance, although it can identify types
like struct*, it cannot infer the fields of a struct. Likewise, it
cannot infer polymorphic types in the style of some constraint-
based methods [42]. While our typing scheme already offers
significant coverage, one could extend Bityr to predict richer
types by using structured prediction instead of classification.

• Scope of Data-Flow Analysis. Our data-flow analysis only exam-
ines intra-procedural data-flow.We expect that an inter-procedural
analysis will yield richer input data for the learning model, and

12

thus better performance. However, inter-procedural analysis is
potentially expensive, and an excessive amount might offset the
scalability benefit of using a machine learning approach. Never-
theless, we believe this to be a fruitful direction of investigation.

• Type Hints of External Functions. Many analysis tools (including
angr) know the types of standard C library functions ahead of
time. Our implementation does not take advantage of these types
to improve prediction accuracy, but it would be straightforward
to support since Bityr can incorporate type hints.

• Indirect Jump Target Resolution. Our analysis relies on angr
to construct control-flow graphs. While angr can accurately
compute the targets of direct jumps, estimating the targets of
jumps that involve dynamic computation is much harder. As a
result, we may end up never exploring certain parts of a function.
Fortunately, the learning model can cope with such missing
information, or fall back to the user for type hints.

8 RELATEDWORK

This work primarily focuses on type inference applied to binaries,
which are compiled object files such as ELF/PE files. Specifically,
we focus on data type inference, i.e., recovering simple types for
the identified variables.

Static analysis, specifically constraint solving, is one of the com-
monly used approaches. These techniques work by first introducing
types based on specific rules and then propagate this seed infor-
mation to different entities (variables/registers or memory objects)
based on the program’s data-flow [40]. Some works focus on infer-
ring a limited set of types such as signed/unsigned integers [65],
strings [13], struct types [56]. On the other hand, works such as
TIE [36] and Retypd [42] attempt to infer a more comprehensive
set of types specified using a type-lattice. These techniques seed
their algorithms by assigning types based on certain base rules. For
instance, an operand for load or store instruction should be of
pointer type. They then use propagation techniques either based
on Value Set Analysis [7] or constraint solving to propagate these
seed types to all other entities.

On the other hand, best-effort techniques [22, 29] that are based
on heuristics suffer from precision. Furthermore, most of these tech-
niques are specific to each architecture, such as x64, x86, ARM, etc.
Although TIE [36] and Retypd [42] try to be architecture-agnostic
by using an IR such as BIL [9], not all architectures (e.g., MIPS) are
supported by BIL. Finally, none of these techniques are available
as open-source [10], which makes it hard to evaluate or extend
them transparently. There are other techniques specific to C++ [26],
where the main goal is to determine the classes and layout of ob-
jects. These techniques are not directly applicable as they mainly
focus on recovering object-oriented features [66] such as class hier-
archy [27, 50] and virtual table layout [19].

Some techniques use dynamic analysis [16, 30, 34, 68], wherein
type propagation is usually done by taint tracking, and finally
combine results from different executions to determine the type of
a variable. However, the effectiveness of these techniques depends
on the feasibility of executing the program and the availability of
high coverage test cases, which is not easy, especially for libraries,
embedded programs, and network-based programs.

Machine learning (ML) techniques have been explored in the
context of binary analysis, popular applications being vulnerability
detection [24, 24, 43, 59], function identification [8, 47, 52, 58], and
code clone detection [18, 23, 25, 45, 61–63]. Most of these works
use traditional ML models such as SVMs. However, recent works
[52, 61] have started using Neural networks, especially Recurrent
Neural Networks (RNNs). ML techniques are also used for semantic
problems such as type inference. CATI [11] uses word2vec to predict
types based on usage contexts. Similarly, EKLAVYA [14] uses RNNs
to predict function signatures, including types of the arguments.
Debin [32] uses probabilistic models to predict debug information
(types and names of variables) in stripped binaries. They use a
dependency graph to encode uses of identified variables and then
convert them into feature vectors and then train a model based
on Extremely Randomized Trees [28]. StateFormer [44] sidesteps
the problem of feature selection by using transformers on micro
execution traces to learn the instruction semantics as pre-trained
models. These pre-trained models are further used to perform type
prediction. Similarly, Dirty [12] also uses a transformer model for
type prediction. The recent technique,OSPrey [69] tries to combine
both constraints solving and machine learning. Unfortunately, as
shown in Table 1, none of these techniques have multi-architecture
support and require considerable effort to extend to a new archi-
tecture. Finally, our comparative evaluation in Section 6.2 shows
that Bityr outperforms all these techniques.

In contrast, Bityr uses data-flow analysis to precisely capture
intra-procedural data-flow graphs and encodes them using graph
neural networks, which in turn perform type inference via classifi-
cation.

9 CONCLUSION

We presented Bityr, a pluggable framework for binary type infer-
ence. Bityr uses data-flow analysis to precisely track the data flow
of program variables in an architecture-agnostic manner. The data-
flow information is encoded using graph neural networks which
then perform type inference as a classification task. We evaluated
Bityr on 33 software projects, and demonstrated that it can predict
fine-grained types for source-level program variables with reason-
ably high accuracy. Furthermore, Bityr can adapt effectively to
feedback, is easy to extend to different architectures, and scales
well to support interactive use-cases.

REFERENCES

[1] Adding new architecture to vex ir. http://angr.io/blog/throwing_a_tantrum_
part_4/.

[2] Ghidra. https://ghidra-sre.org/.
[3] Ida pro. https://hex-rays.com/ida-pro/.
[4] Miltiadis Allamanis, Earl T Barr, Soline Ducousso, and Zheng Gao. Typilus: neural

type hints. In Proceedings of the 41st acm sigplan conference on programming
language design and implementation, pages 91–105, 2020.

[5] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to
represent programs with graphs. 2018.

[6] Shushan Arakelyan, Sima Arasteh, Christophe Hauser, Erik Kline, and Aram
Galstyan. Bin2vec: learning representations of binary executable programs for
security tasks. Cybersecurity, 4(1):1–14, 2021.

[7] Gogul Balakrishnan and Thomas Reps. Analyzing memory accesses in x86
executables. In International conference on compiler construction, pages 5–23.
Springer, 2004.

[8] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley.
{BYTEWEIGHT}: Learning to recognize functions in binary code. In 23rd
{USENIX} Security Symposium ({USENIX} Security 14), pages 845–860, 2014.

13

http://angr.io/blog/throwing_a_tantrum_part_4/
http://angr.io/blog/throwing_a_tantrum_part_4/
https://ghidra-sre.org/
https://hex-rays.com/ida-pro/

[9] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. Bap:
A binary analysis platform. In International Conference on Computer Aided
Verification, pages 463–469. Springer, 2011.

[10] Juan Caballero and Zhiqiang Lin. Type inference on executables. ACMComputing
Surveys (CSUR), 48(4):1–35, 2016.

[11] Ligeng Chen, Zhongling He, and Bing Mao. Cati: Context-assisted type inference
from stripped binaries. In 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 88–98. IEEE, 2020.

[12] Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Claire Le Goues, Graham
Neubig, and Bogdan Vasilescu. Augmenting decompiler output with learned
variable names and types. In 31st USENIX Security Symposium, Boston, MA,
August 2022.

[13] Mihai Christodorescu, Nicholas Kidd, and Wen-Han Goh. String analysis for x86
binaries. In Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pages 88–95, 2005.

[14] Zheng Leong Chua, Shiqi Shen, Prateek Saxena, and Zhenkai Liang. Neural nets
can learn function type signatures from binaries. In 26th {USENIX} Security
Symposium ({USENIX} Security 17), pages 99–116, 2017.

[15] DWARF Debugging Information Format Committee et al. Dwarf debugging
information format, version 4, 2010.

[16] Weidong Cui, Marcus Peinado, Karl Chen, Helen J Wang, and Luis Irun-Briz.
Tupni: Automatic reverse engineering of input formats. In Proceedings of the
15th ACM conference on Computer and communications security, pages 391–402,
2008.

[17] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth
Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems
(TOPLAS), 13(4):451–490, 1991.

[18] Yaniv David, Nimrod Partush, and Eran Yahav. Statistical similarity of binaries.
ACM SIGPLAN Notices, 51(6):266–280, 2016.

[19] David Dewey and Jonathon T Giffin. Static detection of c++ vtable escape
vulnerabilities in binary code. In NDSS, 2012.

[20] Elizabeth Dinella, Hanjun Dai, Ziyang Li, Mayur Naik, Le Song, and Ke Wang.
Hoppity: Learning graph transformations to detect and fix bugs in programs. In
International Conference on Learning Representations (ICLR), 2020.

[21] Lukáš Ďurfina, Jakub Křoustek, Petr Zemek, Dušan Kolář, Tomáš Hruška, Karel
Masařík, and Alexander Meduna. Design of a retargetable decompiler for a
static platform-independent malware analysis. In International Conference on
Information Security and Assurance, pages 72–86. Springer, 2011.

[22] Khaled ElWazeer, Kapil Anand, Aparna Kotha, Matthew Smithson, and Rajeev
Barua. Scalable variable and data type detection in a binary rewriter. In Proceed-
ings of the 34th ACM SIGPLAN conference on Programming language design and
implementation, pages 51–60, 2013.

[23] Sebastian Eschweiler, Khaled Yakdan, and Elmar Gerhards-Padilla. discovre: Effi-
cient cross-architecture identification of bugs in binary code. In NDSS, volume 52,
pages 58–79, 2016.

[24] Qian Feng, Rundong Zhou, Chengcheng Xu, Yao Cheng, Brian Testa, and Heng
Yin. Scalable graph-based bug search for firmware images. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, pages
480–491, 2016.

[25] Qian Feng, Rundong Zhou, Yanhui Zhao, Jia Ma, Yifei Wang, Na Yu, Xudong Jin,
Jian Wang, Ahmed Azab, and Peng Ning. Learning binary representation for
automatic patch detection. In 2019 16th IEEE Annual Consumer Communications
& Networking Conference (CCNC), pages 1–6. IEEE, 2019.

[26] Alexander Fokin, Egor Derevenetc, Alexander Chernov, and Katerina Troshina.
Smartdec: approaching c++ decompilation. In 2011 18th Working Conference on
Reverse Engineering, pages 347–356. IEEE, 2011.

[27] Alexander Fokin, Katerina Troshina, and Alexander Chernov. Reconstruction
of class hierarchies for decompilation of c++ programs. In 2010 14th European
Conference on Software Maintenance and Reengineering, pages 240–243. IEEE,
2010.

[28] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees.
Machine learning, 63(1):3–42, 2006.

[29] I Guilfanov. Simple type system for program reengineering. In Proceedings of the
Eighth Working Conference on Reverse Engineering, pages 357–361. IEEE, 2001.

[30] Philip J Guo, Jeff H Perkins, Stephen McCamant, and Michael D Ernst. Dynamic
inference of abstract types. In Proceedings of the 2006 international symposium
on Software testing and analysis, pages 255–265, 2006.

[31] Christophe Hauser, Yan Shoshitaishvili, and Ruoyu Wang. Poster: Challenges
and next steps in binary program analysis with angr.

[32] Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, and Martin Vechev.
Debin: Predicting debug information in stripped binaries. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, pages
1667–1680, 2018.

[33] Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. Cross-architecture binary
semantics understanding via similar code comparison. In 2016 IEEE 23rd Inter-
national Conference on Software Analysis, Evolution, and Reengineering (SANER),

volume 1, pages 57–67. IEEE, 2016.
[34] Changhee Jung and Nathan Clark. Ddt: design and evaluation of a dynamic

program analysis for optimizing data structure usage. In Proceedings of the 42nd
Annual IEEE/ACM International Symposium on Microarchitecture, pages 56–66,
2009.

[35] Soomin Kim, Markus Faerevaag, Minkyu Jung, Seungll Jung, DongYeop Oh,
JongHyup Lee, and Sang Kil Cha. Testing intermediate representations for
binary analysis. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 353–364. IEEE, 2017.

[36] JongHyup Lee, Thanassis Avgerinos, and David Brumley. Tie: Principled reverse
engineering of types in binary programs. 2011.

[37] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic reverse engineering
of data structures from binary execution. In Proceedings of the 17th Annual
Network and Distributed System Security Symposium (NDSS’10), page 18, San
Diego, CA, Feb 2010.

[38] Alwin Maier, Hugo Gascon, Christian Wressnegger, and Konrad Rieck. Type-
miner: Recovering types in binary programs using machine learning. In Inter-
national Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 288–308. Springer, 2019.

[39] Alessandro Mantovani, Luca Compagna, Yan Shoshitaishvili, and Davide
Balzarotti. The convergence of source code and binary vulnerability discovery –
a case study. In Proceedings of the ACM Symposium on Information, Computer
and Communications Security (ASIACCS22), ASIACCS 22, June 2022.

[40] Alan Mycroft. Type-based decompilation (or program reconstruction via type re-
construction). In European Symposium on Programming, pages 208–223. Springer,
1999.

[41] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. ACM Sigplan notices, 42(6):89–100, 2007.

[42] Matt Noonan, Alexey Loginov, and David Cok. Polymorphic type inference
for machine code. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 27–41, 2016.

[43] Bindu Madhavi Padmanabhuni and Hee Beng Kuan Tan. Buffer overflow vul-
nerability prediction from x86 executables using static analysis and machine
learning. In 2015 IEEE 39th Annual Computer Software and Applications Confer-
ence, volume 2, pages 450–459. IEEE, 2015.

[44] Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian Chen, Songchen Yao,
David Williams-King, Vikas Ummadisetty, Junfeng Yang, Baishakhi Ray, and
Suman Jana. Stateformer: Fine-grained type recovery from binaries using gener-
ative state modeling. In IEEE S&P, 2021.

[45] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray. Trex:
Learning execution semantics from micro-traces for binary similarity. arXiv
preprint arXiv:2012.08680, 2020.

[46] Sakthi Kumar Arul Prakash and Conrad S Tucker. Node classification using
kernel propagation in graph neural networks. Expert Systems with Applications,
174:114655, 2021.

[47] Nathan Rosenblum, Xiaojin Zhu, Barton Miller, and Karen Hunt. Machine
learning-assisted binary code analysis. In NIPS Workshop on Machine Learning
in Adversarial Environments for Computer Security, Whistler, British Columbia,
Canada, December. Citeseer, 2007.

[48] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE transactions on
neural networks, 20(1):61–80, 2008.

[49] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. Modeling relational data with graph convolutional
networks. In European semantic web conference, pages 593–607. Springer, 2018.

[50] Edward J Schwartz, Cory F Cohen, Michael Duggan, Jeffrey Gennari, Jeffrey S
Havrilla, and Charles Hines. Using logic programming to recover c++ classes
and methods from compiled executables. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 426–441, 2018.

[51] Edward J Schwartz, JongHyup Lee, Maverick Woo, and David Brumley. Native
x86 decompilation using semantics-preserving structural analysis and iterative
control-flow structuring. In 22nd USENIX Security Symposium (USENIX Security
13), page 17. USENIX Association, 2013.

[52] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. Recognizing functions in
binaries with neural networks. In 24th {USENIX} Security Symposium ({USENIX}
Security 15), pages 611–626, 2015.

[53] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. SoK: (State of) The Art of War: Offensive Techniques in
Binary Analysis. In IEEE Symposium on Security and Privacy, 2016.

[54] Asia Slowinska, Traian Stancescu, andHerbert Bos. Howard: a dynamic excavator
for reverse engineering data structures. In Proceedings of the 18th Annual Network
and Distributed System Security Symposium (NDSS’11), San Diego, CA, Feb 2011.

[55] Yihao Sun, Jeffrey Ching, and Kristopher Micinski. Declarative demand-driven
reverse engineering. arXiv preprint arXiv:2101.04718, 2021.

[56] Katerina Troshina, Yegor Derevenets, and Alexander Chernov. Reconstruction
of composite types for decompilation. In 2010 10th IEEE Working Conference on

14

Source Code Analysis and Manipulation, pages 179–188. IEEE, 2010.
[57] Daniel Votipka, Seth Rabin, Kristopher Micinski, Jeffrey S Foster, and Michelle L

Mazurek. An observational investigation of reverse engineers’ processes. In 29th
{USENIX} Security Symposium ({USENIX} Security 20), pages 1875–1892, 2020.

[58] Shuai Wang, Pei Wang, and Dinghao Wu. Semantics-aware machine learning
for function recognition in binary code. In 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 388–398. IEEE, 2017.

[59] Yunchao Wang, Zehui Wu, Qiang Wei, and Qingxian Wang. Neufuzz: Efficient
fuzzing with deep neural network. IEEE Access, 7:36340–36352, 2019.

[60] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are
graph neural networks? In Proceedings of the 7th International Conference on
Learning Representations (ICLR), 2019.

[61] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. Neu-
ral network-based graph embedding for cross-platform binary code similarity
detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 363–376, 2017.

[62] Hongfa Xue, Guru Venkataramani, and Tian Lan. Clone-hunter: accelerated
bound checks elimination via binary code clone detection. In Proceedings of the
2ndACMSIGPLAN InternationalWorkshop onMachine Learning and Programming
Languages, pages 11–19, 2018.

[63] Hongfa Xue, Guru Venkataramani, and Tian Lan. Clone-slicer: Detecting domain
specific binary code clones through program slicing. In Proceedings of the 2018
Workshop on Forming an Ecosystem Around Software Transformation, pages 27–33,
2018.

[64] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-Padilla, and Matthew Smith.
Helping johnny to analyze malware: A usability-optimized decompiler and
malware analysis user study. In 2016 IEEE Symposium on Security and Privacy
(SP), pages 158–177. IEEE, 2016.

[65] Qiuchen Yan and Stephen McCamant. Conservative signed/unsigned type infer-
ence for binaries using minimum cut. 2014.

[66] Kyungjin Yoo and Rajeev Barua. Recovery of object oriented features from c++
binaries. In 2014 21st Asia-Pacific Software Engineering Conference, volume 1,
pages 231–238. IEEE, 2014.

[67] Bin Zeng. Static analysis on binary code. Technical report, Tech-report, 2012.
[68] Mingwei Zhang, Aravind Prakash, Xiaolei Li, Zhenkai Liang, and Heng Yin.

Identifying and analyzing pointer misuses for sophisticated memory-corruption
exploit diagnosis. 2012.

[69] Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-Chuan Lee, Yonghwi
Kwon, Yousra Aafer, and Xiangyu Zhang. OSPREY: recovery of variable and data
structure via probabilistic analysis for stripped binary. In 42nd IEEE Symposium
on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages
813–832. IEEE, 2021.

A APPENDIX

Fig 17 shows the process time for graph building on x64 coreutils
O0. 93.37% of functions finished graph building process within 30
seconds and 97.35% of functions complete the process within 60
seconds.

A.1 Impact of Data on Accuracy

To analyze the effect of data, we varied the size of the training data
for arm O0 and measured the change in the performance of our
models. Training data was subsampled at rates of 1%, 5%, 10%, and
increased by 10% for the rest. The results of these experiments are
shown in figure 18. The training data size is plotted on the x-axis,
while accuracy is plotted on the y-axis. As we can see, increasing the
data has a positive impact on the accuracy. This provides evidence
for our observation that low accuracy on ARM and MIPS is due to
a smaller dataset.

Figure 17: Process time distribution for graph building on

x64 Coreutils O0.

1% 10% 20% 40% 70% 100%
0

20

40

60

80

100

Size of Training Set

A
cc
ur
ac
y
(%
)

Figure 18: Accuracy of Bityr on arm O0

15

Table 7: Inference precision for each type on different optimization levels and architectures.

Precision

X64 MIPS X86 ARM

Type O0 O1 O2 O3 O0 O1 O2 O3 O0 O1 O2 O3 O0 O1 O2 O3

struct* 0.94 0.95 0.94 0.94 0.88 0.77 0.78 0.76 0.93 0.93 0.93 0.93 0.88 0.84 0.83 0.81
char* 0.86 0.9 0.88 0.88 0.8 0.66 0.66 0.62 0.86 0.88 0.86 0.87 0.8 0.72 0.76 0.76
u32 0.92 0.93 0.93 0.94 0.8 0.75 0.73 0.75 0.92 0.93 0.93 0.93 0.86 0.83 0.82 0.79
u64 0.93 0.94 0.93 0.94 0.82 0.88 0.68 0.77 0.86 0.89 0.88 0.87 0.88 0.89 0.81 0.81
i32 0.91 0.82 0.78 0.76 0.81 0.63 0.63 0.61 0.82 0.8 0.79 0.78 0.86 0.67 0.7 0.69

array<void> 0.88 0.85 0.89 0.84 0.74 0.77 0.71 0.74 0.77 0.79 0.81 0.77 0.79 0.75 0.78 0.81
struct 0.95 0.95 0.94 0.96 0.8 0.76 0.78 0.81 0.96 0.95 0.95 0.96 0.88 0.81 0.82 0.82
i64 0.89 0.94 0.92 0.89 0.7 0.82 0.96 0.83 0.89 0.94 0.93 0.93 0.78 0.78 0.7 0.79
void* 0.64 0.7 0.66 0.65 0.78 0.72 0.61 0.63 0.63 0.84 0.83 0.75 0.79 0.51 0.51 0.58
bool 0.96 0.95 0.95 0.95 0.94 0.82 0.65 0.74 0.93 0.92 0.91 0.92 0.98 0.89 0.85 0.86

struct** 0.81 0.84 0.86 0.87 0.72 0.71 0.6 0.66 0.81 0.87 0.84 0.86 0.8 0.76 0.58 0.65
enum 0.85 0.96 0.88 0.9 0.74 0.67 0.63 0.81 0.78 0.94 0.9 0.91 0.75 0.63 0.65 0.87
u64* 0.84 0.86 0.8 0.81 0.82 0.78 0.68 0.81 0.62 0.78 0.79 0.8 0.93 0.98 0.69 0.85
char** 0.73 0.85 0.84 0.8 0.78 0.67 0.59 0.61 0.77 0.86 0.85 0.84 0.81 0.78 0.65 0.72
char 0.9 0.88 0.82 0.9 0.92 0.66 0.67 0.66 0.79 0.94 0.85 0.76 0.93 0.84 0.57 0.41
u32* 0.84 0.89 0.87 0.89 0.84 0.83 0.82 0.83 0.72 0.82 0.69 0.77 0.81 0.83 0.82 0.87
union* 0.76 0.84 0.9 0.84 0.81 0.52 0.65 0.63 0.82 0.92 0.94 0.79 0.74 0.76 0.59 0.62
i32* 0.67 0.58 0.71 0.55 0.68 0.61 0.32 0.45 0.57 0.7 0.43 0.41 0.72 0.54 0.45 0.4
f64 0.86 0.85 0.85 0.74 0.89 0.2 0.53 0 0.83 0.86 0.53 0.39 0.77 0.51 0.55 0.39
i64* 0.76 1 0.94 0.97 0.72 0.58 0.7 0.49 0.92 0.99 0.97 0.86 0.96 0.96 0.96 0.82
f32* 0.85 0.5 0.18 0.4 0.7 0 0.03 0.02 0.75 NA NA NA 0.85 0.41 0.46 0.11
u16 0.86 0.96 0.84 0.72 0.8 1 0 0 0.82 0.91 0.87 0.74 0.9 0.21 0 0.31
u16* 0.83 0.79 0.85 0.87 0.24 0.94 0.22 0.64 0.64 0.93 0.9 0.76 0.2 0.82 0.47 0
enum* 0.81 0.99 0.87 0.94 0.73 0 0 0 0.83 1 1 0.99 0.81 0.65 0.75 0.96
union 0.72 0.75 0.8 0.84 0.84 0.94 0.4 0.77 0.2 1 0.5 0.22 0.64 0.19 0.9 0.92
f32 1 0 0 0 0.96 0 NA NA 0.58 NA NA NA 0.82 0 0 0.67

void** 0.99 1 0.97 0.86 0.91 0.81 1 0.66 0.5 1 0.38 0.72 0.8 0.79 0.33 1
i16* 0.99 0.9 0.97 1 0.86 0.8 0 NA 0.55 0.94 0.97 0.69 0.61 NA 0.89 0.95

union** 0.7 0.73 0.71 0.68 0 NA NA 0 0.72 0.94 0.97 0.88 0 0 NA 0
f64* 0.77 0 0.76 0.9 0.42 1 0.53 0 0.79 0.09 0.14 0.2 0.6 0.47 0.96 0.9
i16 1 NA 0.95 0.98 0.82 0 0 0 0.94 0.7 0.83 0 0.92 0 0 0
i64** 0.98 1 1 1 NA NA NA NA NA 0 NA NA 0 0 NA NA

*NA suggests the variable type is not used in the given dataset.

16

	Abstract
	1 Introduction
	2 Background
	2.1 Binary Reverse Engineering
	2.2 Type Inference on Binaries
	2.3 Graph Neural Networks

	3 Overview
	3.1 Binary Type Inference
	3.2 Architecture of Bityr

	4 Methodology
	4.1 The VEX IR
	4.2 Data-Flow Analysis
	4.3 Type Inference with Graph Neural Networks

	5 Implementation and Setup
	6 Evaluation
	6.1 RQ1: Type Inference Accuracy of Bityr
	6.2 RQ2: Comparison Against Baselines
	6.3 RQ3: Impact of Accurate Data-Flow Information
	6.4 RQ4: Efficiency of Bityr

	7 Discussion
	8 Related Work
	9 Conclusion
	References
	A Appendix
	A.1 Impact of Data on Accuracy

